zoukankan      html  css  js  c++  java
  • poj1458——dp,lcs

    poj1458——dp,lcs

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 40529   Accepted: 16351

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    题意:求lcs,水题!
    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    const int maxn=1000100;
    char s[maxn],t[maxn];
    int dp[2][maxn];
    
    int main()
    {
        while(scanf("%s%s",s,t)!=EOF){
            int ls=strlen(s),lt=strlen(t);
            memset(dp,0,sizeof(dp));
            char *ss=s-1,*tt=t-1;
            memset(dp,0,sizeof(dp));
            for(int i=1;i<=ls;i++){
                for(int j=1;j<=lt;j++){
                    if(ss[i]==tt[j]) dp[i%2][j]=dp[(i+1)%2][j-1]+1;
                    else dp[i%2][j]=max(dp[(i+1)%2][j],dp[i%2][j-1]);
                }
            }
            printf("%d
    ",dp[ls%2][lt]);
        }
        return 0;
    }
    View Code
    没有AC不了的题,只有不努力的ACMER!
  • 相关阅读:
    第19篇-Kibana对Elasticsearch的实用介绍
    第18篇-用ElasticSearch索引MongoDB,一个简单的自动完成索引项目
    第17篇-使用Python的初学者Elasticsearch教程
    第16篇-关于Elasticsearch的6件不太明显的事情
    第15篇-使用Django进行ElasticSearch的简单方法
    第14篇-Python中的Elasticsearch入门
    第13篇-Elasticsearch查询-术语级查询
    第12篇-Elasticsearch全文查询
    MQTT
    rest-framework-@action()装饰器
  • 原文地址:https://www.cnblogs.com/--560/p/4356620.html
Copyright © 2011-2022 走看看