zoukankan      html  css  js  c++  java
  • Dream_Chaser队训练赛第一场 K题

    Dream_Chaser队训练赛第一场 K题

    题目来自2012成都区域赛

    K - Yet Another Multiple Problem
    Time Limit:20000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

    Description

    There are tons of problems about integer multiples. Despite the fact that the topic is not original, the content is highly challenging. That’s why we call it “Yet Another Multiple Problem”. 
    In this problem, you’re asked to solve the following question: Given a positive integer n and m decimal digits, what is the minimal positive multiple of n whose decimal notation does not contain any of the given digits?
     

    Input

    There are several test cases. 
    For each test case, there are two lines. The first line contains two integers n and m (1 ≤ n ≤ 10 4). The second line contains m decimal digits separated by spaces. 
    Input is terminated by EOF.
     

    Output

    For each test case, output one line “Case X: Y” where X is the test case number (starting from 1) while Y is the minimal multiple satisfying the above-mentioned conditions or “-1” (without quotation marks) in case there does not exist such a multiple.
     

    Sample Input

    2345 3
    7 8 9
    100 1
    0
     

    Sample Output

    Case 1: 2345
    Case 2: -1
     
    题意:找出不含给定数字的n的倍数。
    思路:bfs+剪枝。利用同余模定理,如果A%n==B%n,则A和B只搜一个,就不用重复搜了,因为在A和B后添加尾数后的效果是一样的,比如添加尾数C,AC%n=(A*10+C)%n=(A%n)*(10%n)+C%n, BC%n=(B%n)*(10%n)+C%n,显然相等。所以从小到大不断对余数添加合法的尾数取余,利用余数判重即可,利用pre数组回溯路径来输出每一位。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<vector>
    #include<stack>
    #include<queue>
    #include<set>
    #include<map>
    #include<string>
    #include<math.h>
    #include<cctype>
    
    using namespace std;
    
    typedef long long ll;
    const int maxn=1000100;
    const int INF=(1<<29);
    const double EPS=0.0000000001;
    const double Pi=acos(-1.0);
    
    ll n,m;
    bool a[20];
    int pre[maxn];
    int num[maxn];
    int tag=1;
    
    void bfs()
    {
        memset(pre,-1,sizeof(pre));
        memset(num,-1,sizeof(num));
        queue<int> q;
        for(int i=1;i<=9;i++){
            if(!a[i]){
                if(i%n==0){
                    printf("%d
    ",i);
                    return;
                }
                q.push(i);
                pre[i%n]=-1;
                num[i%n]=i;
            }
        }
        while(!q.empty()){
            int u=q.front();q.pop();
            if(u==0){
                stack<int> s;
                for(int i=u;i!=-1;i=pre[i]){
                    s.push(num[i]);
                }
                while(!s.empty()){
                    printf("%d",s.top());
                    s.pop();
                }
                printf("
    ");
                return;
            }
            for(int i=0;i<=9;i++){
                if(!a[i]){
                    int v=(u*10+i)%n;
                    if(num[v]==-1){
                        q.push(v);
                        pre[v]=u;
                        num[v]=i;
                    }
                }
            }
        }
        printf("-1
    ");
    }
    
    int main()
    {
        while(cin>>n>>m){
            memset(a,0,sizeof(a));
            while(m--){
                int t;
                scanf("%d",&t);
                a[t]=1;
            }
            printf("Case %d: ",tag++);
            bfs();
        }
        return 0;
    }
    View Code
     
    没有AC不了的题,只有不努力的ACMER!
  • 相关阅读:
    排序
    阿里实习 电面,面试
    外部排序
    error: LNK 2019 无法解析的外部符号
    c++ 变量定义 的初始化规则
    Spring 让 LOB 数据操作变得简单易行
    深入浅出JMS(四)--Spring和ActiveMQ整合的完整实例
    Spring jdbc call oralce procedure or function
    JSON 简单封装
    extjs3 用户管理 页面
  • 原文地址:https://www.cnblogs.com/--560/p/4543051.html
Copyright © 2011-2022 走看看