zoukankan      html  css  js  c++  java
  • codeforces#320(div2) E. Weakness and Poorness 三分

    codeforces#320(div2) E. Weakness and Poorness  三分

    E. Weakness and Poorness
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given a sequence of n integers a1, a2, ..., an.

    Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible.

    The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.

    The poorness of a segment is defined as the absolute value of sum of the elements of segment.

    Input

    The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.

    The second line contains n integers a1, a2, ..., an (|ai| ≤ 10 000).

    Output

    Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.

    Sample test(s)
    input
    3
    1 2 3
    output
    1.000000000000000
    input
    4
    1 2 3 4
    output
    2.000000000000000
    input
    10
    1 10 2 9 3 8 4 7 5 6
    output
    4.500000000000000
    Note

    For the first case, the optimal value of x is 2 so the sequence becomes  - 1, 0, 1 and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case.

    For the second sample the optimal value of x is 2.5 so the sequence becomes  - 1.5,  - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.

    显然,随着x从-INF到INF的过程中,所求值是先减后增的,求最小值所以直接三分法。

    虽然D题FST了,但是却学到了E题的三分法。

    #include<bits/stdc++.h>
    #define REP(i,a,b) for(int i=a;i<=b;i++)
    
    using namespace std;
    
    typedef long long ll;
    const ll INF=(1LL<<33);
    const double EPS=0.00000001;
    const int maxn=1000100;
    
    int n;
    double a[maxn],b[maxn],c[maxn];
    
    double MaxLong(int op)
    {
        REP(i,1,n) c[i]=b[i]*op;
        double now=0,res=c[1];
        REP(i,1,n){
            if(now+c[i]>=0) now+=c[i];
            else now=0;
            res=max(res,now);
        }
        return  res;
    }
    
    double f(double x)
    {
        REP(i,1,n) b[i]=a[i]-x;
        //REP(i,1,n) cout<<b[i]<<" ";cout<<endl;
        return max(MaxLong(1),MaxLong(-1));
    }
    
    double bin3(double l,double r)
    {
        while(l<r){
            double m=(l+r)/2;
            double mm=(m+r)/2;
            //printf("%.2f %.2f %.2f %.2f
    ",l,r,m,mm);
            double fm=f(m),fmm=f(mm);
            //printf("%.2f %.2f
    ",fm,fmm);
            if(fabs(fm-fmm)<EPS) return fm;
            if(fm>fmm+EPS) l=m;
            else r=mm;
        }
    }
    
    int main()
    {
        freopen("in.txt","r",stdin);
        while(cin>>n){
            REP(i,1,n) scanf("%lf",&a[i]);
            //printf("%.10f
    ",f(5.375));
            //REP(i,1,n) cout<<b[i]<<" ";cout<<endl;
            double ans=bin3(-1.0*INF,INF*1.0);
            printf("%.6f
    ",ans);
        }
        return 0;
    }
    View Code
    没有AC不了的题,只有不努力的ACMER!
  • 相关阅读:
    围炉夜话(3)
    围炉夜话(2)
    一步步学习SPD2010--第十一章节--处理母版页(9)--导出母版页
    一步步学习SPD2010--第十一章节--处理母版页(8)--从母版页创建网页
    一步步学习SPD2010--第十一章节--处理母版页(7)--管理Content Placeholders
    一步步学习SPD2010--第十一章节--处理母版页(6)--改变默认母版页
    一步步学习SPD2010--第十一章节--处理母版页(5)--自定义母版页
    一步步学习SPD2010--第十一章节--处理母版页(4)--复制和保存母版页
    一步步学习SPD2010--第十一章节--处理母版页(3)--母版页上使用的控件
    如何使用外部数据列创建SP列表
  • 原文地址:https://www.cnblogs.com/--560/p/4815101.html
Copyright © 2011-2022 走看看