zoukankan      html  css  js  c++  java
  • hdu5534 Partial Tree dp(难)

    hdu5534 Partial Tree  dp(难)

    Partial Tree

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 374    Accepted Submission(s): 209


    Problem Description
    In mathematics, and more specifically in graph theory, a tree is an undirected graph in which any two nodes are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.

    You find a partial tree on the way home. This tree has n nodes but lacks of n1 edges. You want to complete this tree by adding n1 edges. There must be exactly one path between any two nodes after adding. As you know, there are nn2 ways to complete this tree, and you want to make the completed tree as cool as possible. The coolness of a tree is the sum of coolness of its nodes. The coolness of a node is f(d), where f is a predefined function and d is the degree of this node. What's the maximum coolness of the completed tree?
     
    Input
    The first line contains an integer T indicating the total number of test cases.
    Each test case starts with an integer n in one line,
    then one line with n1 integers f(1),f(2),,f(n1).

    1T2015
    2n2015
    0f(i)10000
    There are at most 10 test cases with n>100.
     
    Output
    For each test case, please output the maximum coolness of the completed tree in one line.
     
    Sample Input
    2 3 2 1 4 5 1 4
     
    Sample Output
    5 19
     
    Source
    将前n个度数分给n个点,剩下的就可以随便分了。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define REP(i,a,b) for(int i=a;i<=b;i++)
    #define MS0(a) memset(a,0,sizeof(a))
    
    using namespace std;
    
    typedef long long ll;
    const int maxn=100100;
    const int INF=(1<<29);
    
    int f[maxn],n;
    ll dp[maxn];
    
    int main()
    {
        int T;cin>>T;
        while(T--){
            cin>>n;
            REP(i,1,n-1) scanf("%d",&f[i]);
            ll ans=f[1]*n;
            MS0(dp);
            REP(i,0,n-2) dp[i]=-INF;
            dp[0]=0;
            REP(i,1,n-2){
                REP(j,0,i){
                    dp[i]=max(dp[i],dp[i-j]+f[j+1]-f[1]);
                    //cout<<i<<" "<<dp[i]<<endl;
                }
            }
            ans+=dp[n-2];
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    View Code

     ------可能是我小学生般的dp水平才觉得难,一定要狂补dp!

    没有AC不了的题,只有不努力的ACMER!
  • 相关阅读:
    记录一次线上优化流程
    php ignite 使用问题记录
    invalid contrller specified 错误分析及解决
    koa 2 的 async 和 await 语法
    koa 2 的安装
    vue 自定义组件 v-model双向绑定、 父子组件同步通信的多种写法
    VS2019专业版和企业版激活密钥
    RE:ゼロから始める PKU 生活 episode 2
    CSP-S 2020 游记
    ioi2021集训队作业
  • 原文地址:https://www.cnblogs.com/--560/p/4959602.html
Copyright © 2011-2022 走看看