zoukankan      html  css  js  c++  java
  • Codeforces Round #344 (Div. 2) E. Product Sum 三分

    E. Product Sum
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Blake is the boss of Kris, however, this doesn't spoil their friendship. They often gather at the bar to talk about intriguing problems about maximising some values. This time the problem is really special.

    You are given an array a of length n. The characteristic of this array is the value  — the sum of the products of the values aiby i. One may perform the following operation exactly once: pick some element of the array and move to any position. In particular, it's allowed to move the element to the beginning or to the end of the array. Also, it's allowed to put it back to the initial position. The goal is to get the array with the maximum possible value of characteristic.

    Input

    The first line of the input contains a single integer n (2 ≤ n ≤ 200 000) — the size of the array a.

    The second line contains n integers ai (1 ≤ i ≤ n|ai| ≤ 1 000 000) — the elements of the array a.

    Output

    Print a single integer — the maximum possible value of characteristic of a that can be obtained by performing no more than one move.

    Examples
    input
    4
    4 3 2 5
    output
    39
    input
    5
    1 1 2 7 1
    output
    49
    input
    3
    1 1 2
    output
    9
    Note

    In the first sample, one may pick the first element and place it before the third (before 5). Thus, the answer will be3·1 + 2·2 + 4·3 + 5·4 = 39.

    In the second sample, one may pick the fifth element of the array and place it before the third. The answer will be1·1 + 1·2 + 1·3 + 2·4 + 7·5 = 49.

    在整数上的三分果然要比在小数上的三分需要注意的事要多一点。。。

    首先是要将res初值赋为端点值max(f(l),f(r)),因为整数三分的过程是取不到端点值的,这样就需要在一开始特判l>r时直接返回-INF或INF。看来还是有必要弄个三分的模板的,虽然简单。。

    #include<bits/stdc++.h>
    #define REP(i,a,b) for(int i=a;i<=b;i++)
    #define MS0(a) memset(a,0,sizeof(a))
    
    using namespace std;
    
    typedef long long ll;
    const int maxn=1000100;
    const ll INF=1e18+10;
    
    int n;
    ll a[maxn],s[maxn],is[maxn];
    
    ll getS(int l,int r)
    {
        return l>r?0:s[r]-s[l-1];
    }
    
    ll getIs(int l,int r)
    {
        return l>r?0:is[r]-is[l-1];
    }
    
    ll f(int x,int y,int tag)
    {
        if(tag==0) return getIs(1,x-1)+getIs(x+1,n)+y*a[x]-getS(x+1,y);
        return getIs(1,x-1)+getIs(x+1,n)+y*a[x]+getS(y,x-1);
    }
    
    ll bin3(int l,int r,int x,int tag)
    {
        if(l>r) return -INF;
        ll res=max(f(x,l,tag),f(x,r,tag));
        while(l<=r){
            int m=(l+r)>>1,mm=(m+r)>>1;
            ll fm=f(x,m,tag),fmm=f(x,mm,tag);
            if(fm<=fmm) l=m+1;
            else r=mm-1;
            res=max(res,max(fm,fmm));
        }
        return res;
    }
    
    ll solve()
    {
        ll res=is[n];
        REP(x,1,n){
            ll A=bin3(x+1,n,x,0);
            ll B=bin3(1,x-1,x,1);
            res=max(res,max(A,B));
        }
        return res;
    }
    
    int main()
    {
        freopen("in.txt","r",stdin);
        while(cin>>n){
            s[0]=is[0]=0;
            REP(i,1,n) scanf("%I64d",&a[i]),s[i]=s[i-1]+a[i],is[i]=is[i-1]+a[i]*i;
            printf("%I64d
    ",solve());
        }
        return 0;
    }
    View Code
    没有AC不了的题,只有不努力的ACMER!
  • 相关阅读:
    34.angularJS的{{}}和ng-bind
    33.AngularJS 应用 angular.module定义应用 angular.controller控制应用
    32.AngularJS 表达式
    31.ng-init 指令初始化 AngularJS 应用程序变量。
    30.angularJS第一个实例
    29.AngularJS 简介
    28. Brackets安装angularjs插件
    27.AngularJS 下载地址
    22条创业军规,让你5分钟读完《创业维艰》
    创业维艰:为啥大多数创业者都不开心?
  • 原文地址:https://www.cnblogs.com/--560/p/5242865.html
Copyright © 2011-2022 走看看