Number Sequence
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 24587 Accepted Submission(s): 10436
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
Source
题意:
给出T和P求p出现的位置
代码:
#include<iostream> #include<cstdio> #include<cstring> using namespace std; const int maxn=1000006; const int maxm=10004; int p[maxm],t[maxn]; int f[maxm],n,m; void getfail(int* p,int* f){ f[0]=0;f[1]=0; for(int i=1;i<m;i++){ int j=f[i]; while(j&&p[i]!=p[j]) j=f[j]; f[i+1]=(p[i]==p[j]?j+1:0); } } int find(int* t,int* p,int* f){ getfail(p,f); int j=0; for(int i=0;i<n;i++){ while(j&&p[j]!=t[i]) j=f[j]; if(p[j]==t[i]) j++; if(j==m) return i-m+1+1;//下标从0开始 } return -1; } int main() { int cas; scanf("%d",&cas); while(cas--){ scanf("%d%d",&n,&m); for(int i=0;i<n;i++) scanf("%d",&t[i]); for(int i=0;i<m;i++) scanf("%d",&p[i]); int ans=find(t,p,f); printf("%d ",ans); } return 0; }