zoukankan      html  css  js  c++  java
  • HDU 2825 AC自动机+DP

    Wireless Password

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 7250    Accepted Submission(s): 2384


    Problem Description
    Liyuan lives in a old apartment. One day, he suddenly found that there was a wireless network in the building. Liyuan did not know the password of the network, but he got some important information from his neighbor. He knew the password consists only of lowercase letters 'a'-'z', and he knew the length of the password. Furthermore, he got a magic word set, and his neighbor told him that the password included at least k words of the magic word set (the k words in the password possibly overlapping).

    For instance, say that you know that the password is 3 characters long, and the magic word set includes 'she' and 'he'. Then the possible password is only 'she'.

    Liyuan wants to know whether the information is enough to reduce the number of possible passwords. To answer this, please help him write a program that determines the number of possible passwords.
     
    Input
    There will be several data sets. Each data set will begin with a line with three integers n m k. n is the length of the password (1<=n<=25), m is the number of the words in the magic word set(0<=m<=10), and the number k denotes that the password included at least k words of the magic set. This is followed by m lines, each containing a word of the magic set, each word consists of between 1 and 10 lowercase letters 'a'-'z'. End of input will be marked by a line with n=0 m=0 k=0, which should not be processed.
     
    Output
    For each test case, please output the number of possible passwords MOD 20090717.
     
    Sample Input
    10 2 2 hello world 4 1 1 icpc 10 0 0 0 0 0
     
    Sample Output
    2 1 14195065
     
    Source
     

     题意:

    构造长度是n的字符串其中至少包含k个给定的单词的方案数。字符集a~z

    代码:

    //m只有10显然可以压缩,dp[i][j][k]表示构造到到字符串的i位置在树上的第j节点时包含的单词状态是k时的方案数
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<queue>
    using namespace std;
    typedef long long ll;
    const int MOD=20090717;
    const int MAXN=100000;
    int node[109][27],val[109],sz,f[109],dp[26][109][1030];
    void init()
    {
        sz=0;
        memset(node[0],0,sizeof(node[0]));
        val[0]=f[0]=0;
    }
    void insert(char *s,int nu)
    {
        int len=strlen(s),rt=0;
        for(int i=0;i<len;i++){
            int id=s[i]-'a';
            if(!node[rt][id]){
                node[rt][id]=++sz;
                memset(node[sz],0,sizeof(node[sz]));
                val[sz]=0;
            }
            rt=node[rt][id];
        }
        val[rt]|=(1<<nu);
    }
    void get_fail()
    {
        queue<int>q;
        for(int i=0;i<26;i++){
            int u=node[0][i];
            if(u) { q.push(u);f[u]=0; }
        }
        while(!q.empty()){
            int rt=q.front();q.pop();
            for(int i=0;i<26;i++){
                int u=node[rt][i];
                if(!u){
                    node[rt][i]=node[f[rt]][i];
                    continue;
                }
                q.push(u);
                f[u]=node[f[rt]][i];
            }
            val[rt]|=val[f[rt]];
        }
    }
    void get_dp(int max_sta,int n)
    {
        memset(dp,0,sizeof(dp));
        dp[0][0][0]=1;
        for(int i=0;i<n;i++){
            for(int j=0;j<=sz;j++){
                for(int k=0;k<max_sta;k++){
                    if(dp[i][j][k]==0) continue;
                    for(int h=0;h<26;h++){
                        dp[i+1][node[j][h]][k|val[node[j][h]]]+=dp[i][j][k];
                        dp[i+1][node[j][h]][k|val[node[j][h]]]%=MOD;
                    }
                }
            }
        }
    }
    int one(int x)
    {
        int s=0;
        while(x){
            s+=x&1;
            x>>=1;
        }
        return s;
    }
    int main()
    {
        //freopen("in.txt","r",stdin);
        int n,m,k;
        char ch[20];
        while(scanf("%d%d%d",&n,&m,&k)&&(n+m+k)){
            init();
            for(int i=0;i<m;i++){
                scanf("%s",ch);
                insert(ch,i);
            }
            int max_sta=(1<<m);
            get_fail();
            get_dp(max_sta,n);
            int ans=0;
            for(int j=0;j<max_sta;j++){
                int tmp=one(j);
                if(tmp<k) continue;
                for(int i=0;i<=sz;i++){
                    ans+=dp[n][i][j];
                    ans%=MOD;
                }
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    iOS之CALayer属性简介
    iOS之UIGraphics.h方法简介
    iOS之CGcontext.h方法和属性简介
    iOS之CATiledLayer的属性简介和使用
    iOS之CATextLayer属性简介
    iOS之CAScrollLayer属性简介和使用
    iOS之CAReplicatorLayer属性简介和使用
    iOS之CAGradientLayer属性简介和使用
    iOS之CAShapeLayer属性简介
    iOS之UIBezierPath贝塞尔曲线属性简介
  • 原文地址:https://www.cnblogs.com/--ZHIYUAN/p/7678307.html
Copyright © 2011-2022 走看看