zoukankan      html  css  js  c++  java
  • gems gems gems

    Now there are nn gems, each of which has its own value. Alice and Bob play a game with these nn gems.
    They place the gems in a row and decide to take turns to take gems from left to right.
    Alice goes first and takes 1 or 2 gems from the left. After that, on each turn a player can take kk or k+1k+1 gems if the other player takes kk gems in the previous turn. The game ends when there are no gems left or the current player can't take kk or k+1k+1 gems.
    Your task is to determine the difference between the total value of gems Alice took and Bob took. Assume both players play optimally. Alice wants to maximize the difference while Bob wants to minimize it.

    InputThe first line contains an integer TT (1T101≤T≤10 ), the number of the test cases.
    For each test case:
    the first line contains a numbers nn (1n200001≤n≤20000 );
    the second line contains n numbers: V1,V2VnV1,V2…Vn . (100000Vi100000−100000≤Vi≤100000 )
    OutputFor each test case, print a single number in a line: the difference between the total value of gems Alice took and the total value of gems Bob took.
    Sample Input

    1
    3
    1 3 2

    Sample Output

    4
    #include<bits/stdc++.h>
    using namespace std;
    const long long INF = 1e18;
    const int N = 20000 + 10;
    const int K = 210;
    const int TN = 255 + 10;
    const int MOD = 255;
    int T, n;
    int v[N], pre[N], dp[2][TN][K];
    int main()
    {
        scanf("%d", &T);
        while(T-- && scanf("%d", &n)!=EOF)
        {
            memset(dp, 0, sizeof(dp));
            for(int i=1;i<=n;i++)
            {
                scanf("%d", &v[i]);
                pre[i] = pre[i-1] + v[i];
            }
            int lmt = sqrt(n*2.0) + 1;
            for(int idx=n;idx;idx--)
            for(int k=lmt;k;k--)
            {
                if(idx+k <= n) {
                    dp[0][idx&MOD][k] = pre[idx+k-1] - pre[idx-1] +
                        max(dp[1][(idx+k)&MOD][k], dp[1][(idx+k+1)&MOD][k+1] + v[idx+k]);
                    dp[1][idx&MOD][k] = -pre[idx+k-1] + pre[idx-1] + 
                        min(dp[0][(idx+k)&MOD][k], dp[0][(idx+k+1)&MOD][k+1] - v[idx+k]);
                }   
                else if(idx+k-1 <= n) {
                    dp[0][idx&MOD][k] = dp[1][(idx+k)&MOD][k] + pre[idx+k-1] - pre[idx-1];
                    dp[1][idx&MOD][k] = dp[0][(idx+k)&MOD][k] - pre[idx+k-1] + pre[idx-1];
                }
            }
            printf("%d
    ", dp[0][1][1]);
        }
    }
    

      

  • 相关阅读:
    linux 常用命令
    git 常见命令
    合并两个有序链表---python
    Code Contract for .NET
    Kruskal最小生成树算法
    逻辑-哲学
    停机问题
    逆向工程
    .net framework
    python 类库
  • 原文地址:https://www.cnblogs.com/--lr/p/7587333.html
Copyright © 2011-2022 走看看