zoukankan      html  css  js  c++  java
  • poj2356鸽舍原理

            The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers is not greater than 15000. This numbers are not necessarily different (so it may happen that two or more of them will be equal). Your task is to choose a few of given numbers ( 1 <= few <= N ) so that the sum of chosen numbers is multiple for N (i.e. N * k = (sum of chosen numbers) for some natural number k).

    Input

    The first line of the input contains the single number N. Each of next N lines contains one number from the given set.

    Output

    In case your program decides that the target set of numbers can not be found it should print to the output the single number 0. Otherwise it should print the number of the chosen numbers in the first line followed by the chosen numbers themselves (on a separate line each) in arbitrary order.

    If there are more than one set of numbers with required properties you should print to the output only one (preferably your favorite) of them.

    Sample Input

    5
    1
    2
    3
    4
    1
    

    Sample Output

    2
    2
    3
    #include<stdio.h>
    #include<string.h>
    int n,c;
    int a[100010],b[100010],vis[100010],sum[100010];
    int main()
    {
    
        while(scanf("%d",&n)!=EOF)
        {
            int x,y;
            memset(vis,-1,sizeof(vis));
            memset(sum ,0,sizeof(sum));
            vis[0] = 0;//前i项可以被c整除
            for(int i=1;i<=n;i++){
                scanf("%d",&a[i]);
                sum[i]=(a[i]+sum[i-1])%n;
                if(vis[sum[i]]==-1)
                    vis[sum[i]] = i;
                else
                {
                    x = vis[sum[i]];//vis[sum[i]] = i;记录了上一次的i
                    y = i;
                }
            }
                printf("%d
    ",y-x);
                for(int i = x+1;i <= y;i++)
                        printf("%d
    ",a[i]);
        }
        return 0;
    }
  • 相关阅读:
    P3368 【模板】树状数组 2
    P3374 【模板】树状数组 1
    BZOJ 2654
    BZOJ 1016
    BZOJ 4870
    BZOJ 4868
    BZOJ 1503
    P3379 【模板】最近公共祖先(LCA)
    雅礼2017国庆1-1
    使用 CefSharp 网页显示问题
  • 原文地址:https://www.cnblogs.com/--lr/p/8362525.html
Copyright © 2011-2022 走看看