zoukankan      html  css  js  c++  java
  • POJ 1860 Currency Exchange(BellmanFord算法的变形,求正环)

    Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
    For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
    You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively. 
    Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

    Input

    The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3
    For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2
    Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4

    Output

    If Nick can increase his wealth, output YES, in other case output NO to the output file.

    Sample Input

    3 2 1 20.0
    1 2 1.00 1.00 1.00 1.00
    2 3 1.10 1.00 1.10 1.00
    

    Sample Output

    3 2 1 20.0
    1 2 1.00 1.00 1.00 1.00
    2 3 1.10 1.00 1.10 1.00
    

    Sample Output

    YES
    有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币
    交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到
    (100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终
    得到的s币金额数能否增加
    货币的交换是可以重复多次的,所以我们需要找出是否存在
    正权回路,且最后得到的s金额是增加的
    怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
    
    关键在于反向利用Bellman-Ford算法
    
    
    单源最短路径算法,因为题目可能存在负边,所以用Bellman Ford算法,
    原始Bellman Ford可以用来求负环,这题需要改进一下用来求正环
    
    一种货币就是图上的一个点
    一个“兑换点”就是图上两种货币之间的一个兑换环,相当于“兑换方式”M的个数,是双边
    唯一值得注意的是权值,当拥有货币A的数量为V时,A到A的权值为K,即没有兑换
    而A到B的权值为(V-Cab)*Rab
    本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰
    与bellman-Ford算法的松弛条件相反,求的是能无限松弛的最大正权路径,
    但是依然能够利用bellman-Ford的思想去解题。
    因此初始化d(S)=V   而源点到其他店的距离(权值)初始化为无穷小(0),
    当s到其他某点的距离能不断变大时,说明存在最大路径


     1 #include <stdio.h>
     2 #include <algorithm>
     3 #include <iostream>
     4 #include <stdbool.h>
     5 #include <stdlib.h>
     6 #include <string>
     7 #include <string.h>
     8 #include <math.h>
     9 #include <vector>
    10 #include <queue>
    11 #include <stack>
    12 #include <map>
    13 
    14 #define INF 0x3f3f3f3f
    15 #define LL long long
    16 #define MAXN 300
    17 using namespace std;
    18 
    19 double dist[MAXN];
    20 
    21 int nodenum,edgenum;
    22 int S;
    23 double V;
    24 int D[MAXN][2];  // 起点终点
    25 double C[MAXN][2];  // 汇率和手续费
    26 
    27 bool Bellman_fold()
    28 {
    29     for (int i=1;i<=nodenum;i++)
    30         dist[i] = 0;
    31     dist[S] = V;
    32     for (int i=1;i<nodenum;i++)
    33     {
    34         for (int j=1;j<=edgenum;j++)
    35         {
    36             int u = D[j][0];
    37             int v = D[j][1];
    38             if (dist[v]< (dist[u]-C[j][1])*C[j][0])
    39             {
    40                 dist[v] = (dist[u]-C[j][1])*C[j][0];
    41             }
    42         }
    43     }
    44     for (int i=1;i<=edgenum;i++)
    45     {
    46         int u = D[i][0];
    47         int v = D[i][1];
    48         if (dist[v]< (dist[u]-C[i][1])*C[i][0])
    49         {
    50             return true;
    51         }
    52     }
    53     return false;
    54 }
    55 
    56 int main()
    57 {
    58     //freopen("../in.txt","r",stdin);
    59     while (~scanf("%d%d%d%lf",&nodenum,&edgenum,&S,&V))
    60     {
    61         int a,b;
    62         double c,d,e,f;
    63         int i=0;
    64         while (edgenum--)
    65         {
    66             scanf("%d%d%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f);
    67             i++;
    68             D[i][0] = a;
    69             D[i][1] = b;
    70             C[i][0] = c;
    71             C[i][1] = d;
    72             i++;
    73             D[i][0] = b;
    74             D[i][1] = a;
    75             C[i][0] = e;
    76             C[i][1] = f;
    77         }
    78         edgenum = i;
    79         if (Bellman_fold())
    80             printf("YES
    ");
    81         else
    82             printf("NO
    ");
    83     }
    84     return 0;
    85 }
    Ackerman
  • 相关阅读:
    synchronized (lock) 买票demo 线程安全
    springboot项目搭建
    Maven命令
    Mybatis的mapper文件中$和#的用法及区别详解
    mybatis映射文件mapper.xml的写法(collections...)
    MyBatis-动态SQL的if、choose、when、otherwise、trim、where、set、foreach使用(各种标签详解), 以及实体间关系配置
    024 搭建前台系统-----乐优商城工程启动步骤教程
    023 商品管理功能03-----商品修改
    023 商品管理功能02-----商品新增
    022 商品管理功能01-----商品查询
  • 原文地址:https://www.cnblogs.com/-Ackerman/p/11267340.html
Copyright © 2011-2022 走看看