zoukankan      html  css  js  c++  java
  • Splay模版

    首先需要先知道一个概念: 二叉搜索树 —— 左孩子比父亲小,右孩子大于等于父亲

    一、Splay的旋转

    旋转是Splay的精髓也是至关重要的操作 

    旋转也分为左旋、右旋

    这里是直接概括了所有旋转的规律:

    我们定义一个结点与他父亲的关系是 x ,那么在旋转时,他的父亲成为了他的 !x 儿子,并且那个上文中所说的“多余结点”,同时也是当前节点的 !x 儿子,但在旋转之后需要成为当前节点的“前”父节点的 x 儿子。

    我们可以先看看这部分的代码

    inline bool get_which(int x) {
        return sons[f[x]][1] == x;
    }
    
    inline void update(int x) {
        if (x) {
            sub_siz[x] = cnt[x];
            if (sons[x][0])
                sub_siz[x] += sub_siz[sons[x][0]];
            if (sons[x][1])
                sub_siz[x] += sub_siz[sons[x][1]];
        }
    }
    
    inline void rotate(int x) {
        int father = f[x],grand_father = f[father],which_son = get_which(x);
        sons[father][which_son] = sons[x][which_son^1]; // 修改"前父亲"的孩子
        f[sons[father][which_son]] = father; // 修改孩子的父亲
        sons[x][which_son^1] = father; // 修改 x 的孩子
        f[father] = x; // 修改"前父亲"的父亲
        f[x] = grand_father; // 修改当前 x 的父亲
        if (grand_father)
            sons[grand_father][sons[grand_father][1] == father] = x;
        update(father);
        update(x);
    }

    Spaly操作:

    只需要记住一句话:我们在链很长的时候,每次执行先旋父节点再旋当前节点的操作,一次总操作之后,这条链的深度会减半。

    inline void splay(int x) {
        for (int fa;fa=f[x];rotate(x))
            if (f[fa])
                rotate((get_which(x)==get_which(fa))?fa:x);
        root=x;
    }

    我们在进行与点有关的操作的时候都需要进行Splay,借此来维护树的随机性

    模版:

    #include <iostream>
    #include <algorithm>
    #include <string>
    #include <string.h>
    #include <vector>
    #include <map>
    #include <stack>
    #include <set>
    #include <queue>
    #include <math.h>
    #include <cstdio>
    #include <iomanip>
    #include <time.h>
    #include <bitset>
    #include <cmath>
    #include <sstream>
    
    #define LL long long
    #define INF 0x3f3f3f3f
    #define ls nod<<1
    #define rs (nod<<1)+1
    
    const double eps = 1e-10;
    const int maxn = 1e6 + 10;;
    const LL mod = 1e9 + 7;
    
    int sgn(double a){return a < -eps ? -1 : a < eps ? 0 : 1;}
    using namespace std;
    
    int f[maxn],cnt[maxn],val[maxn],sons[maxn][2],sub_siz[maxn];
    int whole_siz,root;
    
    inline void S_clear(int x) {
        sons[x][0] = sons[x][1] = sub_siz[x] = cnt[x] = val[x] = 0;
    }
    
    inline bool get_which(int x) {
        return sons[f[x]][1] == x;
    }
    
    inline void update(int x) {
        if (x) {
            sub_siz[x] = cnt[x];
            if (sons[x][0])
                sub_siz[x] += sub_siz[sons[x][0]];
            if (sons[x][1])
                sub_siz[x] += sub_siz[sons[x][1]];
        }
    }
    
    inline void rotate(int x) {
        int father = f[x],grand_father = f[father],which_son = get_which(x);
        sons[father][which_son] = sons[x][which_son^1];
        f[sons[father][which_son]] = father;
        sons[x][which_son^1] = father;
        f[father] = x;
        f[x] = grand_father;
        if (grand_father)
            sons[grand_father][sons[grand_father][1] == father] = x;
        update(father);
        update(x);
    }
    
    inline void splay(int x) {
        for (int fa;fa=f[x];rotate(x))
            if (f[fa])
                rotate((get_which(x)==get_which(fa))?fa:x);
        root=x;
    }
    
    inline void ins(int x) {
        if (!root) {
            whole_siz++;
            sons[whole_siz][0] = sons[whole_siz][1] = f[whole_siz] = 0;
            root = whole_siz;
            sub_siz[whole_siz] = cnt[whole_siz] = 1;
            val[whole_siz] = x;
            return ;
        }
        int now = root,fa = 0;
        while (1) {
            if (x == val[now]) {
                cnt[now]++;
                update(now);
                update(fa);
                splay(now);
                break;
            }
            fa = now;
            now = sons[now][val[now]<x];
            if (!now) {
                whole_siz++;
                sons[whole_siz][0] = sons[whole_siz][1] = 0;
                f[whole_siz] = fa;
                sub_siz[whole_siz] = cnt[whole_siz] = 1;
                sons[fa][val[fa]<x] = whole_siz;
                val[whole_siz] = x;
                update(fa);
                splay(whole_siz);
                break;
            }
        }
    }
    
    inline int find_num(int x) {
        int now = root;
        while (1) {
            if (sons[now][0] && x <= sub_siz[sons[now][0]])
                now = sons[now][0];
            else {
                int tmp = (sons[now][0]?sub_siz[sons[now][0]]:0)+cnt[now];
                if (x <= tmp)
                    return val[now];
                x -= tmp;
                now = sons[now][1];
            }
        }
    }
    
    inline int find_rank(int x) {
        int now = root,ans = 0;
        while (1) {
            if (x < val[now])
                now = sons[now][0];
            else {
                ans += (sons[now][0]?sub_siz[sons[now][0]]:0);
                if (x == val[now]) {
                    splay(now);
                    return ans+1;
                }
                ans += cnt[now];
                now = sons[now][1];
            }
        }
    }
    
    inline int find_pre() {
        int now = sons[root][0];
        while (sons[now][1])
            now = sons[now][1];
        return now;
    }
    
    inline int find_suffix() {
        int now = sons[root][1];
        while (sons[now][0])
            now = sons[now][0];
        return now;
    }
    
    inline void my_delete(int x) {
        int hhh = find_rank(x);
        if (cnt[root] > 1) {
            cnt[root]--;
            update(root);
            return ;
        }
        if (!sons[root][0] && !sons[root][1]) {
            S_clear(root);
            root = 0;
            whole_siz = 0;
            return ;
        }
        if (!sons[root][0]) {
            int old_root = root;
            root = sons[root][1];
            f[root] = 0;
            S_clear(old_root);
            return ;
        }
        else if (!sons[root][1]) {
            int old_root = root;
            root = sons[root][0];
            f[root] = 0;
            S_clear(old_root);
            return ;
        }
        int left_max = find_pre(),old_root = root;
        splay(left_max);
        sons[root][1] = sons[old_root][1];
        f[sons[old_root][1]] = root;
        S_clear(old_root);
        update(root);
    }
    
    int main(){
        int m,num,be_dealt;
        cin >> m;
        for(int i = 1;i <= m;i++){
            cin >> num;
            cin >> be_dealt;
            switch(num)
            {
                case 1:ins(be_dealt);break;
                case 2:my_delete(be_dealt);break;
                case 3:printf("%d
    ",find_rank(be_dealt));break;
                case 4:printf("%d
    ",find_num(be_dealt));break;
                case 5:ins(be_dealt);printf("%d
    ",val[find_pre()]);my_delete(be_dealt);break;
                case 6:ins(be_dealt);printf("%d
    ",val[find_suffix()]);my_delete(be_dealt);break;
            }
        }
        return 0;
    }

    参考博客:https://www.luogu.com.cn/blog/pks-LOVING/more-senior-data-structure-te-bie-qian-di-qian-tan-splay

  • 相关阅读:
    Redis:特殊数据类型,hyperloglog(基数),bitmap(位存储)
    Redis:特殊类型geospatial(地理位置类型,纬经度)
    Redis:zset常用指令
    Redis:hash常用指令
    Redis:set集合常用常用指令
    Pytorch学习-数据操作
    天池Python训练营笔记—Python基础入门:从变量到异常处理
    Python基础语法快速复习-面对对象编程
    Python基础语法快速复习-函数式编程
    Python基础语法快速复习-高级特性
  • 原文地址:https://www.cnblogs.com/-Ackerman/p/12392703.html
Copyright © 2011-2022 走看看