zoukankan      html  css  js  c++  java
  • 中文词频统计与词云生成

    作业来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2822

    中文词频统计

    1. 下载一长篇中文小说。

    2. 从文件读取待分析文本。

    3. 安装并使用jieba进行中文分词。

    pip install jieba

    import jieba

    jieba.lcut(text)

    4. 更新词库,加入所分析对象的专业词汇。

    jieba.add_word('天罡北斗阵')  #逐个添加

    jieba.load_userdict(word_dict)  #词库文本文件

    参考词库下载地址:https://pinyin.sogou.com/dict/

    转换代码:scel_to_text

    5. 生成词频统计

    6. 排序

    7. 排除语法型词汇,代词、冠词、连词等停用词。

    stops

    tokens=[token for token in wordsls if token not in stops]

    8. 输出词频最大TOP20,把结果存放到文件里

    9. 生成词云。

     1 import jieba
     2 import struct
     3 import os
     4 from wordcloud import WordCloud
     5 import matplotlib.pyplot as plt
     6 from scipy.misc import imread
     7 
     8 result_path = r'C:UsersLJDesktopwordcloud
    esult.txt'
     9 fiction_path = r'C:UsersLJDesktopwordcloud天龙八部.txt'
    10 stops_path = r'C:UsersLJDesktopwordcloudstops_chinese.txt'
    11 userdict_path = r'C:UsersLJDesktopwordclouduserdict天龙八部词库.txt'
    12 def save_result():
    13     # 读取小说
    14     with open(fiction_path, 'r', encoding='utf8') as f:
    15         fiction = f.read().replace('
    ', '')
    16     #   读取停用词
    17     with open(stops_path, 'r', encoding='utf8') as f:
    18         stops = f.read().split('
    ')
    19     #     添加用户自定义字典
    20     jieba.load_userdict(userdict_path)
    21     #  分词并发挥list
    22     wordlist = jieba.lcut(fiction)
    23     # 去除停用词
    24     wordlist_nostop = [word for word in wordlist if word not in stops]
    25     wordfrequency = {}
    26     # 统计词频
    27     for i in wordlist_nostop:
    28         if i not in wordfrequency:
    29             wordfrequency[i] = 1
    30         else:
    31             wordfrequency[i] += 1
    32     #   list才可排序 所以把set变为list
    33     paixu = list(wordfrequency.items())
    34     # 以value排序
    35     paixu.sort(key=lambda x: x[1], reverse=True)
    36     # Top20
    37     paixu = paixu[0:20]
    38     result = ''
    39     # 取key转成string
    40     for i in paixu:
    41         result = result + i[0] + ' '
    42     #     保存top20
    43     with open(result_path, 'w', encoding='utf8') as f:
    44         f.write(result)
    45 def read_result():
    46     #   读取top20
    47     with open(result_path, 'r', encoding='utf8') as f:
    48         return f.read()
    49 save_result()
    50 result = read_result()
    51 # 读取图片,
    52 im = imread(r'C:UsersLJDesktopmask.jpg')
    53 # 遮罩图为im
    54 mywc = WordCloud(background_color='pink', mask=im, margin=1).generate(result)
    55 plt.imshow(mywc)
    56 plt.axis("off")
    57 # 显示词云
    58 plt.show()

    运行结果:

    遮罩图:

    Top20:

    词云:

  • 相关阅读:
    Linux下使用mail发送邮件
    Thirft框架介绍
    当谈论设备指纹时,我们到底在说什么?(转)
    设备指纹(Device Fingerprinting)是什么?
    搭建RESTful API 之 实现WSGI服务的URL映射
    OpenStack设计与实现5——RESTful API和WSGI
    Charles使用
    iBeacon室内定位原理解析【转】
    docker安装
    chase
  • 原文地址:https://www.cnblogs.com/-QAQ/p/10593280.html
Copyright © 2011-2022 走看看