zoukankan      html  css  js  c++  java
  • sql server索引入门

    索引原理

      索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等,下面内容看不懂的同学也没关系,能明白这个目录的道理就行了。 那么你想,书的目录占不占页数,这个页是不是也要存到硬盘里面,也占用硬盘空间。你再想,你在没有数据的情况下先建索引或者说目录快,还是已经存在好多的数据了,然后再去建索引,哪个快,肯定是没有数据的时候快,因为如果已经有了很多数据了,你再去根据这些数据建索引,是不是要将数据全部遍历一遍,然后根据数据建立索引。你再想,索引建立好之后再添加数据快,还是没有索引的时候添加数据快,索引是用来干什么的,是用来加速查询的,那对你写入数据会有什么影响,肯定是慢一些了,因为你但凡加入一些新的数据,都需要把索引或者说书的目录重新做一个,所以索引虽然会加快查询,但是会降低写入的效率。索引类似一本书籍的目录

    索引影响

    ​ 1、在表中有大量数据的前提下,创建索引速度会很慢

    ​ 2、在索引创建完毕后,对表的查询性能会发幅度提升,但是写性能会降低

    ​ 本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。

     但是数据库就不想是一本书籍的目录一样简单,因为数据库中的查询种类有很多:

      等值查询(=)、

      范围查询(>、<、between、in)、

      模糊查询(like)、

      并集查询(or)等等

    数据库在读取数据的时候必然要进行IO的操作从磁盘中读取数据然后把数据放到内存中。IO操作是非常浪费时间的,索引的出现就是让计算机系统进行少量的IO操作。计算机系统也有对IO操作的优化,一次IO可以读取一页的数据一般为4k或8k。,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内。

    索引的数据结构

    索引怎么做到减少IO,加速查询的。任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生(B+树是通过二叉查找树,再由平衡二叉树,B树演化而来)

    如上图,是一颗b+树,最上层是树根,中间的是树枝,最下面是叶子节点,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块或者叫做一个block块,这是操作系统一次IO往内存中读的内容,一个块对应四个扇区,可以看到每个磁盘块包含几个数据项(深蓝色所示,一个磁盘块里面包含多少数据,一个深蓝色的块表示一个数据,其实不是数据,后面有解释)和指针(黄色所示,看最上面一个,p1表示比上面深蓝色的那个17小的数据的位置在哪,看它指针指向的左边那个块,里面的数据都比17小,p2指向的是比17大比35小的磁盘块),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

    b+树的查找过程
    如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。除了叶子节点,其他的树根啊树枝啊保存的就是数据的索引,他们是为你建立这种数据之间的关系而存在的。 3次IO代表了在内存中缓存了3次数据,

    b+树的查找过程
    如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。除了叶子节点,其他的树根啊树枝啊保存的就是数据的索引,他们是为你建立这种数据之间的关系而存在的。

    b+树性质
    1.索引字段要尽量的小:通过上面的分析,我们知道IO次数取决于b+数的高度h或者说层级,这个高度或者层级就是你每次查询数据的IO次数,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。

    ​ 所以我们需要将树建的越低越好,因为每个磁盘块的大小是一定的,那么意味着我们单个数据库里面的单个数据的大小越大越好还是越小越好,你想啊,你现在叶子节点的磁盘块,两个数据就沾满了,你数据要是更大的话,你这一个磁盘块就只能放一个数据了亲,这样随着你数据量的增大,你的树就越高啊,我们应该想办法让树的层数低下来,效率才高啊,所以我们应该让每个数据的大小尽可能的小,那就意味着,你每个磁盘块存的数据就越多,你树的层级就越少啊,树就越低啊,对不对。并且数据的数量越大,你需要的磁盘块越多,磁盘块越多,你需要的树的层级就越高,所以我们应该尽可能的用更少的磁盘块来装更多的数据项,这样树的高度才能降下来,怎么才能装更多的数据项啊,当然是你的数据项越小,你的磁盘块盛放的数据量就越多了,所以如果一张表中有很多的字段,我们应该用什么字段来建立索引啊,如果你有id字段、name字段、描述信息字段等等的,你应该用哪个来建立索引啊,当然是id字段了,你想想对不对,因为id是个数字,占用空间最少啊。

    ​ 2.索引的最左匹配特性:简单来说就是你的数据来了以后,从数据块的左边开始匹配,在匹配右边的,知道这句话就行啦~~~~,我们继续学下面的内容。当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

    聚集索引与辅助索引

    聚集索引是什么呢,其实就是我们说的那个主键,之前我们说Innodb存储引擎的表,必须有一个主键,还记得为什么吗,我们说过的...不记得了吧,看下面

        还记得MyISAM存储引擎在创建表的时候会在硬盘上生成哪些文件吗,是不是有三个.frm.MYD.MYI结尾的三个文件,frm结尾的是表结构,MYD结尾的是数据文件,MYI结尾的就是索引文件,也就是说索引也是存在硬盘上的,那InnoDB引擎呢,创建一个表,在硬盘上会生成.frm.idb结尾的两个文件,那索引的呢,难道InnoDB就用不了索引吗?怎么可能?之前咱们有没有建立过索引啊,primary key、unique key是不是都叫做索引啊,但是索引那个文件去哪了呢,索引是不可能在表结构.frm(存什么字段什么类型这些东西)的文件中,那就只剩下.idb结尾的数据文件了,索引就在这里面,InnoDB引擎的表,它的索引和数据都在同一个文件里面,所以我一直强调,使用InnoDB存储引擎的时候,每建一个表,就需要给一个主键,是因为这个主键是InnoDB存储引擎的.idb文件来组织存储数据的依据或者说方式,也就是说InnoDB存储引擎在存储数据的时候默认就按照索引的那种树形结构来帮你存。这种索引,我们就称为聚集索引,也就是在聚集数据组织数据的时候,就用这种索引。InnoDB这么做就是为了加速查询效率,因为你经常会遇到基于主键来查询数据的情况,并且通常我们把id字段作为主键,第一点是因为id占用的数据空间不大,第二点是你经常会用到id来查数据。如果你的表有两个字段,一个id一个name,id为主键,当你查询的时候如果where后面的条件是name=多少多少,那么你就没有用到主键给你带来的加速查询的效果(需要主键之外的辅助索引),如果你用where id=多少多少,就会按照我们刚才上面说的哪种树形结构来给你找寻数据了(当然不仅仅有这种树形结构的数据结构类型),能够快速的帮你定位到数据块。这种聚集索引的特点是它会以id字段作为依据,去建立树形结构,但是叶子节点存的是你表中的一条完整记录,一条完整的数据。记住这一点昂,一会将辅助索引的时候,和这个内容有关系,会讲到一个回表的概念。

      在数据库中,B+树的高度一般都在24层,这也就是说查找某一个键值的行记录时最多只需要2到4次IO,这倒不错。因为当前一般的机械硬盘每秒至少可以做100次IO,24次的IO意味着查询时间只需要0.02~0.04秒。

      数据库中的B+树索引可以分为聚集索引(clustered index)和辅助索引(secondary index),

      聚集索引与辅助索引相同的是:不管是聚集索引还是辅助索引,其内部都是B+树的形式,即高度是平衡的,叶子结点存放着所有的数据。

      聚集索引与辅助索引不同的是:叶子结点存放的是否是一整行的信息

     

    聚集索引

    #InnoDB存储引擎表示索引组织表,即表中数据按照主键顺序存放。而聚集索引(clustered index)就是按照每张表的主键构造一棵B+树,同时叶子结点存放的即为整张表的行记录数据,也将聚集索引的叶子结点称为数据页。聚集索引的这个特性决定了索引组织表中数据也是索引的一部分。同B+树数据结构一样,每个数据页都通过一个双向链表来进行链接。

    #如果未定义主键,MySQL取第一个唯一索引(unique)而且只含非空列(NOT NULL)作为主键,InnoDB使用它作为聚簇索引。

    #如果没有这样的列,InnoDB就自己产生一个这样的ID值,它有六个字节,而且是隐藏的,使其作为聚簇索引。

    #由于实际的数据页只能按照一棵B+树进行排序,因此每张表只能拥有一个聚集索引。在多少情况下,查询优化器倾向于采用聚集索引。因为聚集索引能够在B+树索引的叶子节点上直接找到数据。此外由于定义了数据的逻辑顺序,聚集索引能够特别快地访问针对范围值得查询

    它对主键的排序查找和范围查找速度非常快,叶子节点的数据就是用户所要查询的数据。如用户需要查找一张表,查询最后的10位用户信息,由于B+树索引是双向链表,所以用户可以快速找到最后一个数据页,并取出10条记录

    #参照第六小结测试索引的准备阶段来创建出表s1 
    mysql> desc s1; #最开始没有主键
    +--------+-------------+------+-----+---------+-------+
    | Field  | Type        | Null | Key | Default | Extra |
    +--------+-------------+------+-----+---------+-------+
    | id     | int(11)     | NO   |     | NULL    |       |
    | name   | varchar(20) | YES  |     | NULL    |       |
    | gender | char(6)     | YES  |     | NULL    |       |
    | email  | varchar(50) | YES  |     | NULL    |       |
    +--------+-------------+------+-----+---------+-------+
    4 rows in set (0.00 sec)
    
    mysql> explain select * from s1 order by id desc limit 10; #Using filesort,需要二次排序这里可以看一下rows扫描行数 Extra:执行情况的描述和说明
    +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
    | id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows    | filtered | Extra          |
    +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
    |  1 | SIMPLE      | s1    | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 2633472 |   100.00 | Using filesort |
    +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+
    1 row in set, 1 warning (0.11 sec)
    
    mysql> alter table s1 add primary key(id); #添加主键
    Query OK, 0 rows affected (13.37 sec)
    Records: 0  Duplicates: 0  Warnings: 0
    
    mysql> explain select * from s1 order by id desc limit 10; #基于主键的聚集索引在创建完毕后就已经完成了排序,无需二次排序
    +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
    | id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra |
    +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
    |  1 | SIMPLE      | s1    | NULL       | index | NULL          | PRIMARY | 4       | NULL |   10 |   100.00 | NULL  |
    +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+-------+
    1 row in set, 1 warning (0.04 sec)

    ​ 聚集索引的好处之二:范围查询(range query),即如果要查找主键某一范围内的数据,通过叶子节点的上层中间节点就可以得到页的范围,之后直接读取数据页即可

    mysql> alter table s1 drop primary key;
    Query OK, 2699998 rows affected (24.23 sec)
    Records: 2699998  Duplicates: 0  Warnings: 0
    
    mysql> desc s1;
    +--------+-------------+------+-----+---------+-------+
    | Field  | Type        | Null | Key | Default | Extra |
    +--------+-------------+------+-----+---------+-------+
    | id     | int(11)     | NO   |     | NULL    |       |
    | name   | varchar(20) | YES  |     | NULL    |       |
    | gender | char(6)     | YES  |     | NULL    |       |
    | email  | varchar(50) | YES  |     | NULL    |       |
    +--------+-------------+------+-----+---------+-------+
    4 rows in set (0.12 sec)
    
    mysql> explain select * from s1 where id > 1 and id < 1000000; #没有聚集索引,预估需要检索的rows数如下,explain就是预估一下你的sql的执行效率
    +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
    | id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows    | filtered | Extra       |
    +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
    |  1 | SIMPLE      | s1    | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 2690100 |    11.11 | Using where |
    +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+-------------+
    1 row in set, 1 warning (0.00 sec)
    
    mysql> alter table s1 add primary key(id);
    Query OK, 0 rows affected (16.25 sec)
    Records: 0  Duplicates: 0  Warnings: 0
    
    mysql> explain select * from s1 where id > 1 and id < 1000000; #有聚集索引,预估需要检索的rows数如下
    +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
    | id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref  | rows    | filtered | Extra       |
    +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
    |  1 | SIMPLE      | s1    | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL | 1343355 |   100.00 | Using where |
    +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+
    1 row in set, 1 warning (0.09 sec)

    辅助索引

     就是我们在查询的时候,where后面需要写id之外的其他字段名称来进行查询,比如说是where name=xx,没法用到主键索引的效率,怎么办,就需要我们添加辅助索引了,给name添加一个辅助索引。

        表中除了聚集索引外其他索引都是辅助索引(Secondary Index,也称为非聚集索引)(unique key啊、index key啊),与聚集索引的区别是:辅助索引的叶子节点不包含行记录的全部数据。

        叶子节点存放的是对应的那条数据的主键字段的值,除了包含键值以外,每个叶子节点中的索引行中还包含一个书签(bookmark),其实这个书签你可以理解为是一个{'name字段',name的值,主键id值}的这么一个数据。该书签用来告诉InnoDB存储引擎去哪里可以找到与索引相对应的行数据。如果我们select 后面要的是name,我们直接就可以在辅助索引的叶子节点找到对应的name值,比如:select name from tb1 where name='xx';这个xx值你直接就在辅助索引的叶子节点就能找到,这种我们也可以称为覆盖索引。如果你select后面的字段不是name,例如:select age from tb1 where name='xx';也就是说,我通过辅助索引的叶子节点不能直接拿到age的值,需要通过辅助索引的叶子节点中保存的主键id的值再去通过聚集索引来找到完整的一条记录,然后从这个记录里面拿出age的值,这种操作有时候也成为回表操作,就是从头再回去查一遍,这种的查询效率也很高,但是比覆盖索引低一些,再说一下昂,再辅助索引的叶子节点就能找到你想找的数据可称为覆盖索引。

  • 相关阅读:
    我的第一个python web开发框架(27)——定制ORM(三)
    我的第一个python web开发框架(26)——定制ORM(二)
    我的第一个python web开发框架(25)——定制ORM(一)
    我的第一个python web开发框架(24)——系统重构与ORM
    我的第一个python web开发框架(23)——代码版本控制管理与接口文档
    我的第一个python web开发框架(22)——一个安全小事故
    CentOS7安装详解
    自动化运维工具-mussh工具安装配置及简单使用讲解
    自动化运维工具-pdsh工具安装配置及简单使用讲解
    自动化运维工具-pssh工具安装配置及简单使用讲解
  • 原文地址:https://www.cnblogs.com/-alvin/p/13578425.html
Copyright © 2011-2022 走看看