http://acm.hdu.edu.cn/showproblem.php?pid=1007
题意:即给定坐标系上N个点,找到距离最短的两个点。
参考博客:https://www.cnblogs.com/zyxStar/p/4591897.html
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const double inf = 1e20; const int maxn = 100005; struct Point { double x, y; }point[maxn]; int n, mpt[maxn]; //以x为基准排序 bool cmpxy(const Point& a, const Point& b) { if (a.x != b.x) return a.x < b.x; return a.y < b.y; } bool cmpy(const int& a, const int& b) { return point[a].y < point[b].y; } double min(double a, double b) { return a < b ? a : b; } //求两点距离 double dis(int i, int j) { return sqrt((point[i].x - point[j].x)*(point[i].x - point[j].x) + (point[i].y - point[j].y)*(point[i].y - point[j].y)); } //将平面二分为左右两个点集,分别找平面左右两边中最短的距离d //然后再把平面区间在[left,right]范围内的点中,把p.x到中点mid距离小于d的点标记 //被标记的点按x坐标再次排序 //两个for遍历这个点集,更新最小距离d double Closest_Pair(int left, int right) { double d = inf; if (left == right) return d; if (left + 1 == right) return dis(left, right); int mid = (left + right) >> 1; double d1 = Closest_Pair(left, mid); double d2 = Closest_Pair(mid + 1, right); d = min(d1, d2); int i, j, k = 0; //分离出宽度为d的区间 for (i = left; i <= right; i++) { if (fabs(point[mid].x - point[i].x) <= d) mpt[k++] = i; } sort(mpt, mpt + k, cmpy); //线性扫描 for (i = 0; i < k; i++) { for (j = i + 1; j < k && point[mpt[j]].y - point[mpt[i]].y < d; j++) { double d3 = dis(mpt[i], mpt[j]); if (d > d3) d = d3; } } return d; } int main() { while (~scanf("%d", &n) && n) { for (int i = 0; i < n; i++) scanf("%lf %lf", &point[i].x, &point[i].y); sort(point, point + n, cmpxy); printf("%.2lf ", Closest_Pair(0, n - 1) / 2); } return 0; }