Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 66391 Accepted Submission(s): 28456
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
//HD1016 #include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> using namespace std; static int j = 1; int n, a[20]; bool prime[40], vis[20]; bool is_prime(int m)//素数判断 { if (m == 1)//1不是素数 return false; for (int i = 2; i*i <= m; i++)//素数只能被1和本身整除 if (m % i == 0) return false; return true; } void dfs(int cur) { if (cur == n && prime[a[0] + a[n - 1]])//递归出口,当到最后一个数并且首位相加为素数就结束递归 { for (int i = 0; i < n; i++) { cout << a[i]; if (i < n - 1) cout << ' '; else cout << endl; } } else for (int i = 2; i <= n; i++) if (!vis[i] && prime[i + a[cur - 1]]) { a[cur] = i; vis[i] = 1; dfs(cur + 1); vis[i] = 0; } } int main() { memset(a, 0, sizeof(a)); memset(prime, false, sizeof(prime)); memset(vis, false, sizeof(vis)); for (int i = 1; i < 40; i++) prime[i] = is_prime(i); while (scanf("%d", &n) != EOF) { a[0] = 1; printf("Case %d: ", j++); dfs(1); cout << endl; } return 0; }