Description
给定一棵树,有m次操作。
1 x 把第x条边染成黑色
2 x 把第x条边染成白色
3 x y 查询x~y之间的黑边数,存在白边输出-1
Input
第1行为一个整数(n),表示有(n)个节点。
接下来(n-1)行描述一棵树。
第(n+1)行为一个整数(m)表示有(m)次操作。
接下来(m)行每行描述一个操作。
Output
对于每一个(3)操作输出一行。
一眼看到就能发现,这是一个树剖题,还是边权剖分。
需要注意的是边权转点权的时候,边权要赋值给较深的那个点,因为这样可以保证唯一性。
然后最终,轻重链交替跳转过程的最后,要注意应从(dfn[x]+1,)到(dfn[y])
考虑我们当前点(x)接受的是哪条边的边权,但是现在查询过程中,是并没有涉及到这条边的。
我们记录白色边的权值为(0),黑色边的权值为(1),对于一段查询的区间,如果最小值为(0),那么就表明有白色边,输出(-1)即可。
否则查询区间和即可.(此时黑色边的边权为(1),这段区间的区间和就表示有多少条黑边。)
代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define R register
using namespace std;
const int gz=1e5+8;
inline void in(R int &x)
{
R int f=1;x=0;R char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int head[gz],tot,n,m;
struct cod{int u,v,fr;}edge[gz<<1];
inline void add(R int x,R int y)
{
edge[++tot].u=head[x];
edge[tot].fr=x;
edge[tot].v=y;
head[x]=tot;
}
int dfn[gz],idx,son[gz],f[gz],depth[gz],size[gz],top[gz];
void dfs1(R int u,R int fa)
{
f[u]=fa;depth[u]=depth[fa]+1;size[u]=1;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
size[u]+=size[edge[i].v];
if(son[u]==-1 or size[son[u]]<size[edge[i].v])
son[u]=edge[i].v;
}
}
void dfs2(R int u,R int t)
{
dfn[u]=++idx;top[u]=t;
if(son[u]==-1)return ;
dfs2(son[u],t);
for(R int i=head[u];i;i=edge[i].u)
{
if(dfn[edge[i].v])continue;
dfs2(edge[i].v,edge[i].v);
}
}
int mn[gz<<2],tr[gz<<2];
#define ls o<<1
#define rs o<<1|1
inline void up(R int o)
{
tr[o]=tr[ls]+tr[rs];
mn[o]=min(mn[ls],mn[rs]);
}
void build(R int o,R int l,R int r)
{
if(l==r)
{
tr[o]=mn[o]=1;
return;
}
R int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
up(o);
}
void change(R int o,R int l,R int r,R int pos,R int k)
{
if(l==r){tr[o]=mn[o]=k;return;}
R int mid=(l+r)>>1;
if(pos<=mid)change(ls,l,mid,pos,k);
else change(rs,mid+1,r,pos,k);
up(o);
}
int query_min(R int o,R int l,R int r,R int x,R int y)
{
if(x<=l and y>=r)return mn[o];
R int mid=(l+r)>>1,res=2147483647LL;
if(x<=mid)res=min(res,query_min(ls,l,mid,x,y));
if(y>mid)res=min(res,query_min(rs,mid+1,r,x,y));
return res;
}
int query(R int o,R int l,R int r,R int x,R int y)
{
if(x<=l and y>=r)return tr[o];
R int mid=(l+r)>>1,res=0;
if(x<=mid)res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
inline int tquery_min(R int x,R int y)
{
R int fx=top[x],fy=top[y],res=2147483647LL;
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
res=min(res,query_min(1,1,n,dfn[fx],dfn[x]));
x=f[fx];
}
else
{
res=min(res,query_min(1,1,n,dfn[fy],dfn[y]));
y=f[fy];
}
fx=top[x],fy=top[y];
}
if(x==y)return res;
if(dfn[x]>dfn[y])swap(x,y);
res=min(res,query_min(1,1,n,dfn[x]+1,dfn[y]));
return res;
}
inline int tquery(R int x,R int y)
{
R int fx=top[x],fy=top[y],res=0;
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
res+=query(1,1,n,dfn[fx],dfn[x]);
x=f[fx];
}
else
{
res+=query(1,1,n,dfn[fy],dfn[y]);
y=f[fy];
}
fx=top[x],fy=top[y];
}
if(x==y)return res;
if(dfn[x]>dfn[y])swap(x,y);
res+=query(1,1,n,dfn[x]+1,dfn[y]);
return res;
}
int main()
{
in(n);memset(son,-1,sizeof son);
for(R int i=1,x,y;i<n;i++)
in(x),in(y),add(x,y),add(y,x);
dfs1(1,0);dfs2(1,1);build(1,1,n);
in(m);
for(R int i=1,opt,x,y;i<=m;i++)
{
in(opt);
if(opt==1)
{
in(x);x*=2;
if(depth[edge[x].fr]>depth[edge[x].v])x=edge[x].fr;
else x=edge[x].v;
change(1,1,n,dfn[x],1);
}
if(opt==2)
{
in(x);x*=2;
if(depth[edge[x].fr]>depth[edge[x].v])x=edge[x].fr;
else x=edge[x].v;
change(1,1,n,dfn[x],0);
}
if(opt==3)
{
in(x),in(y);
if(tquery_min(x,y)==0)puts("-1");
else printf("%d
",tquery(x,y));
}
}
}