zoukankan      html  css  js  c++  java
  • HDU 3078 Network LCA水题

    Problem Description
    The ALPC company is now working on his own network system, which is connecting all N ALPC department. To economize on spending, the backbone network has only one router for each department, and N-1 optical fiber in total to connect all routers.
    The usual way to measure connecting speed is lag, or network latency, referring the time taken for a sent packet of data to be received at the other end.
    Now the network is on trial, and new photonic crystal fibers designed by ALPC42 is trying out, the lag on fibers can be ignored. That means, lag happened when message transport through the router. ALPC42 is trying to change routers to make the network faster, now he want to know that, which router, in any exactly time, between any pair of nodes, the K-th high latency is. He needs your help.
     
    Input
    There are only one test case in input file.
    Your program is able to get the information of N routers and N-1 fiber connections from input, and Q questions for two condition: 1. For some reason, the latency of one router changed. 2. Querying the K-th longest lag router between two routers.
    For each data case, two integers N and Q for first line. 0<=N<=80000, 0<=Q<=30000.
    Then n integers in second line refer to the latency of each router in the very beginning.
    Then N-1 lines followed, contains two integers x and y for each, telling there is a fiber connect router x and router y.
    Then q lines followed to describe questions, three numbers k, a, b for each line. If k=0, Telling the latency of router a, Ta changed to b; if k>0, asking the latency of the k-th longest lag router between a and b (include router a and b). 0<=b<100000000.
    A blank line follows after each case.
     
    Output
    For each question k>0, print a line to answer the latency time. Once there are less than k routers in the way, print "invalid request!" instead.
     
    Sample Input
    5 5
    5 1 2 3 4
    3 1
    1
    4 3
    5 3
    2 4 5
    0 1 2
     
    2 2 3
    2 1 4
    3 3 5
     
    Sample Output
    3 2 2
    invalid request!
     
     
     
     
    给出一棵树,和树上各点的权值
     
    然后有q个询问,每个询问输入k a b
    若k==0  则要求把a点的权值改为b
    若k>0   则要求输出a,b路径上的点中,权值第k大的点。
     
    若没有的话,输出invalid request!
     
    思路:直接把a,b路径上的点的权值存进一个数组里面,然后对数组大到小排序,输出第k个。
    这么暴力竟然可以过,还是140ms。
     
      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 
      5 using namespace std;
      6 
      7 const int maxn=80000+5;
      8 
      9 struct Edge
     10 {
     11     int to,next;
     12 }edge[maxn<<1];
     13 
     14 int head[maxn];
     15 int tot;
     16 int w[maxn];
     17 int dep[maxn];
     18 int ans[1000];
     19 int p[maxn][25];
     20 
     21 void init()
     22 {
     23     memset(dep,0,sizeof(dep));
     24     dep[1]=1;
     25     memset(p,-1,sizeof(p));
     26     memset(w,-1,sizeof(w));
     27     memset(head,-1,sizeof(head));
     28     tot=1;
     29 }
     30 
     31 void addedge(int u,int v)
     32 {
     33     edge[tot].to=v;
     34     edge[tot].next=head[u];
     35     head[u]=tot++;
     36 }
     37 
     38 void dfs(int u)
     39 {
     40     for(int i=head[u];~i;i=edge[i].next)
     41     {
     42         int v=edge[i].to;
     43         if(!dep[v])
     44         {
     45             dep[v]=dep[u]+1;
     46             p[v][0]=u;
     47             dfs(v);
     48         }
     49     }
     50 }
     51 
     52 void init_lca(int n)
     53 {
     54     for(int j=1;(1<<j)<=n;j++)
     55     {
     56         for(int i=1;i<=n;i++)
     57         {
     58             if(p[i][j-1]!=-1)
     59                 p[i][j]=p[p[i][j-1]][j-1];
     60         }
     61     }
     62 }
     63 
     64 bool cmp(int a,int b)
     65 {
     66     return a>b;
     67 }
     68 
     69 int solve(int n,int a,int b,int k)
     70 {
     71     if(dep[a]<dep[b])
     72         swap(a,b);
     73 
     74     int init_a=a;
     75     int init_b=b;
     76 
     77     int cnt;
     78 
     79     for(cnt=0;(1<<cnt)<=dep[a];cnt++)
     80         ;
     81     cnt--;
     82 
     83     for(int j=cnt;j>=0;j--)
     84     {
     85         if(dep[a]-(1<<j)>=dep[b])
     86             a=p[a][j];
     87     }
     88 
     89     int lca;
     90 
     91     if(a==b)
     92     {
     93         lca=b;
     94         if(dep[init_a]-dep[lca]+1<k)
     95             return -1;
     96     }
     97 
     98     else
     99     {
    100         for(int j=cnt;j>=0;j--)
    101         {
    102             if(p[a][j]!=-1&&p[a][j]!=p[b][j])
    103             {
    104                 a=p[a][j];
    105                 b=p[b][j];
    106             }
    107         }
    108         lca=p[a][0];
    109         if(dep[init_a]+dep[init_b]-2*dep[lca]+1<k)
    110             return -1;
    111     }
    112 
    113     tot=1;
    114 
    115     for(int i=dep[init_a];i>=dep[lca];i--)
    116     {
    117         ans[tot++]=w[init_a];
    118         init_a=p[init_a][0];
    119     }
    120 
    121     for(int i=dep[init_b];i>dep[lca];i--)
    122     {
    123         ans[tot++]=w[init_b];
    124         init_b=p[init_b][0];
    125     }
    126 
    127     sort(ans+1,ans+tot,cmp);
    128 
    129     return ans[k];
    130 
    131 
    132 }
    133 
    134 int main()
    135 {
    136     int n,Q;
    137     scanf("%d%d",&n,&Q);
    138 
    139     init();
    140 
    141     for(int i=1;i<=n;i++)
    142         scanf("%d",&w[i]);
    143 
    144     for(int i=1;i<n;i++)
    145     {
    146         int a,b;
    147         scanf("%d%d",&a,&b);
    148         addedge(a,b);
    149         addedge(b,a);
    150     }
    151 
    152     dfs(1);
    153 
    154     init_lca(n);
    155 
    156     for(int i=0;i<Q;i++)
    157     {
    158         int k,a,b;
    159         scanf("%d%d%d",&k,&a,&b);
    160         if(k==0)
    161         {
    162             w[a]=b;
    163         }
    164         else
    165         {
    166             int ans=solve(n,a,b,k);
    167             if(ans==-1)
    168                 printf("invalid request!
    ");
    169             else
    170                 printf("%d
    ",ans);
    171         }
    172     }
    173     return 0;
    174 }
    140ms
     
     
  • 相关阅读:
    声明式事务
    AOP面向切面编程笔记
    IOC容器和Bean的配置实例
    IOC容器和Bean的配置
    nlogn的最长不下降子序列【tyvj1254挑选士兵】
    POJ1703 Find them, Catch them
    [code]poj3349 Snowflake Snow Snowflakes
    hdu 4607 Park Visit 树的直径
    hdu 1520 Anniversary party
    hdu 4863 Centroid of a Tree 树dp
  • 原文地址:https://www.cnblogs.com/-maybe/p/4501304.html
Copyright © 2011-2022 走看看