zoukankan      html  css  js  c++  java
  • POJ 3268 Silver Cow Party 最短路 基础题

                      Silver Cow Party
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 14370   Accepted: 6480

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: NM, and X 
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10

    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

    Source

     
     
     
     
     
    题意:现在有N头牛,编号为1~N,分别住在N个不同的地方,这N个地方组成的图有M条单向的路。
    现在编号为X的牛要组织一场盛大的party,邀请所有的牛去他家玩。
    每头牛要先去X的家,然后再回自己的家,牛总是走可以走的最短的路。
    问:哪一头牛来回所花费的时间最多,输出最多的花费时间。
     
     
     
    直接dijkstra
    先dijkstra一次
    然后对边进行一次反转,即把所有的有向边的方向反转
    再dijkstra一次
     
    然后找出dis[0][i]+dis[1][i]中的最大值即可。
     
    好,睡觉。
     
      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 
      5 using namespace std;
      6 
      7 const int MAXN=1005;
      8 const int INF=0x3f3f3f3f;
      9 
     10 int cost[MAXN][MAXN];
     11 int dis[2][MAXN];
     12 bool vis[MAXN];
     13 bool vis_two[MAXN][MAXN];
     14 
     15 void dijkstra(int cnt,int N,int X)
     16 {
     17     for(int i=1;i<=N;i++)
     18         dis[cnt][i]=INF;
     19     for(int i=1;i<=N;i++)
     20         vis[i]=false;
     21     dis[cnt][X]=0;
     22 
     23     for(int j=1;j<=N;j++)
     24     {
     25         int minc=INF;
     26         int p=-1;
     27         for(int i=1;i<=N;i++)
     28         {
     29             if(!vis[i]&&dis[cnt][i]<minc)
     30             {
     31                 minc=dis[cnt][i];
     32                 p=i;
     33             }
     34         }
     35         vis[p]=true;
     36         for(int i=1;i<=N;i++)
     37         {
     38             if(!vis[i]&&dis[cnt][p]+cost[p][i]<dis[cnt][i])
     39                 dis[cnt][i]=dis[cnt][p]+cost[p][i];
     40         }
     41     }
     42 }
     43 
     44 void change(int N)
     45 {
     46     memset(vis_two,false,sizeof(vis_two));
     47     for(int i=1;i<=N;i++)
     48     {
     49         for(int j=1;j<=N;j++)
     50         {
     51             if(!vis_two[i][j])
     52             {
     53                 int tmp=cost[i][j];
     54                 cost[i][j]=cost[j][i];
     55                 cost[j][i]=tmp;
     56                 vis_two[i][j]=true;
     57                 vis_two[j][i]=true;
     58             }
     59         }
     60     }
     61 }
     62 
     63 void solve(int N)
     64 {
     65     int ret=-1;
     66     for(int i=1;i<=N;i++)
     67     {
     68         if(dis[0][i]+dis[1][i]>ret)
     69             ret=dis[0][i]+dis[1][i];
     70     }
     71     printf("%d
    ",ret);
     72 }
     73 
     74 int main()
     75 {
     76     int N,M,X;
     77     while(~scanf("%d%d%d",&N,&M,&X))
     78     {
     79         for(int i=1;i<=N;i++)
     80         {
     81             for(int j=1;j<=N;j++)
     82             {
     83                 if(i==j)
     84                     cost[i][j]=0;
     85                 else
     86                     cost[i][j]=INF;
     87             }
     88         }
     89         for(int i=0;i<M;i++)
     90         {
     91             int u,v,w;
     92             scanf("%d%d%d",&u,&v,&w);
     93             cost[u][v]=w;
     94         }
     95 
     96         dijkstra(0,N,X);
     97         change(N);
     98         dijkstra(1,N,X);
     99 
    100         solve(N);
    101     }
    102     return 0;
    103 }
    View Code
     
     
     
     
     
     
     
  • 相关阅读:
    Spring 框架的概述以及Spring中基于XML的IOC配置
    SpringBoot(1)
    C/C++经典程序之打印三角形
    C++构造函数详解(复制构造函数)
    利用函数模板计算并返回数组d 中size个元素的平方和
    C++模板之typename和class关键字的区别
    构造函数与成员函数的区别?
    为什么多数穷人很难逆袭成功
    用递归方式求解这个问题:一只母兔从四岁开始每年生一只小母兔,按此规律,第n年有多少只母兔?
    编写一个函数 reverseDigit(int num).该函数读入一个整数,然后将这个整数的每个位上的数字逆序输出。
  • 原文地址:https://www.cnblogs.com/-maybe/p/4603536.html
Copyright © 2011-2022 走看看