zoukankan      html  css  js  c++  java
  • CF 518 D. Ilya and Escalator

    Ilya got tired of sports programming, left university and got a job in the subway. He was given the task to determine the escalator load factor.

    Let's assume that n people stand in the queue for the escalator. At each second one of the two following possibilities takes place: either the first person in the queue enters the escalator with probability p, or the first person in the queue doesn't move with probability (1 - p), paralyzed by his fear of escalators and making the whole queue wait behind him.

    Formally speaking, the i-th person in the queue cannot enter the escalator until people with indices from 1 to i - 1 inclusive enter it. In one second only one person can enter the escalator. The escalator is infinite, so if a person enters it, he never leaves it, that is he will be standing on the escalator at any following second. Ilya needs to count the expected value of the number of people standing on the escalator after t seconds.

    Your task is to help him solve this complicated task.

    Input

    The first line of the input contains three numbers n, p, t (1 ≤ n, t ≤ 2000, 0 ≤ p ≤ 1). Numbers n and t are integers, numberp is real, given with exactly two digits after the decimal point.

    Output

    Print a single real number — the expected number of people who will be standing on the escalator after t seconds. The absolute or relative error mustn't exceed 10 - 6.

    Sample test(s)
    input
    1 0.50 1
    output
    0.5
    input
    1 0.50 4
    output
    0.9375
    input
    4 0.20 2
    output
    0.4


    简单dp
    dp(i,j)表示第i分钟时,有j个人进去的概率
    期望=∑j*dp(t,j)

    注意:递推的时候要分2种情况:
    队列还有人,队列已经没有人




    #include<cstdio>
    #include<cstring>
    #include<vector>
    #include<iostream>
    #include<algorithm>
    #include<stack>
    #include<queue>
    
    #define LL long long
    #define ULL unsigned long long
    
    using namespace std;
    
    const int maxn=2005;
    
    double dp[maxn][maxn];
    
    void solve(int ,double ,int );
    
    int main()
    {
        //loop:
        int n,t;
        double pro;
        scanf("%d %lf %d",&n,&pro,&t);
        solve(n,pro,t);
        //goto loop;
        return 0;
    }
    
    void solve(int n,double pro,int t)
    {
        for(int i=0;i<maxn;i++)
            for(int j=0;j<maxn;j++)
                dp[i][j]=0.0;
        dp[0][0]=1.0;
    
        for(int i=1;i<=t;i++){
            dp[i][0]=dp[i-1][0]*(1.0-pro);
            for(int j=1;j<=i;j++){
                if(j<n){
                    dp[i][j]=dp[i-1][j-1]*pro+dp[i-1][j]*(1.0-pro);
                }
                else if(j==n)
                    dp[i][j]=dp[i-1][j-1]*pro+dp[i-1][j];
                else
                    dp[i][j]=0.0;
            }
        }
    
        double ret=0.0;
        for(int j=0;j<=t;j++){
            ret+=dp[t][j]*j;
        }
    
        printf("%.10f
    ",ret);
        return ;
    }



  • 相关阅读:
    拓端tecdat|R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
    拓端tecdat|R语言资产配置策略量化模型:改进的移动平均线策略动态回测
    拓端tecdat|R语言量化:合成波动率指数移动平均策略分析标准普尔500波动率指数(VIX)
    拓端tecdat|Python中的多项式回归拟合非线性关系实例
    从集团管控到集团赋能
    性能之巅-优化你的程序
    3个小时,从学到做,我用低代码平台搭了一套管理系统
    Hadoop架构原理
    硬核操作系统讲解
    一文弄懂什么是DevOps
  • 原文地址:https://www.cnblogs.com/-maybe/p/4853462.html
Copyright © 2011-2022 走看看