zoukankan      html  css  js  c++  java
  • CF 518 D. Ilya and Escalator

    Ilya got tired of sports programming, left university and got a job in the subway. He was given the task to determine the escalator load factor.

    Let's assume that n people stand in the queue for the escalator. At each second one of the two following possibilities takes place: either the first person in the queue enters the escalator with probability p, or the first person in the queue doesn't move with probability (1 - p), paralyzed by his fear of escalators and making the whole queue wait behind him.

    Formally speaking, the i-th person in the queue cannot enter the escalator until people with indices from 1 to i - 1 inclusive enter it. In one second only one person can enter the escalator. The escalator is infinite, so if a person enters it, he never leaves it, that is he will be standing on the escalator at any following second. Ilya needs to count the expected value of the number of people standing on the escalator after t seconds.

    Your task is to help him solve this complicated task.

    Input

    The first line of the input contains three numbers n, p, t (1 ≤ n, t ≤ 2000, 0 ≤ p ≤ 1). Numbers n and t are integers, numberp is real, given with exactly two digits after the decimal point.

    Output

    Print a single real number — the expected number of people who will be standing on the escalator after t seconds. The absolute or relative error mustn't exceed 10 - 6.

    Sample test(s)
    input
    1 0.50 1
    output
    0.5
    input
    1 0.50 4
    output
    0.9375
    input
    4 0.20 2
    output
    0.4


    简单dp
    dp(i,j)表示第i分钟时,有j个人进去的概率
    期望=∑j*dp(t,j)

    注意:递推的时候要分2种情况:
    队列还有人,队列已经没有人




    #include<cstdio>
    #include<cstring>
    #include<vector>
    #include<iostream>
    #include<algorithm>
    #include<stack>
    #include<queue>
    
    #define LL long long
    #define ULL unsigned long long
    
    using namespace std;
    
    const int maxn=2005;
    
    double dp[maxn][maxn];
    
    void solve(int ,double ,int );
    
    int main()
    {
        //loop:
        int n,t;
        double pro;
        scanf("%d %lf %d",&n,&pro,&t);
        solve(n,pro,t);
        //goto loop;
        return 0;
    }
    
    void solve(int n,double pro,int t)
    {
        for(int i=0;i<maxn;i++)
            for(int j=0;j<maxn;j++)
                dp[i][j]=0.0;
        dp[0][0]=1.0;
    
        for(int i=1;i<=t;i++){
            dp[i][0]=dp[i-1][0]*(1.0-pro);
            for(int j=1;j<=i;j++){
                if(j<n){
                    dp[i][j]=dp[i-1][j-1]*pro+dp[i-1][j]*(1.0-pro);
                }
                else if(j==n)
                    dp[i][j]=dp[i-1][j-1]*pro+dp[i-1][j];
                else
                    dp[i][j]=0.0;
            }
        }
    
        double ret=0.0;
        for(int j=0;j<=t;j++){
            ret+=dp[t][j]*j;
        }
    
        printf("%.10f
    ",ret);
        return ;
    }



  • 相关阅读:
    无题
    【HNOI 2002 】营业额统计
    P1589
    【网络流24题】最长递增子序列
    【NOI2008】志愿者招募
    【NOI2015】软件包管理器
    P1347
    【BZOJ 3262三维偏序】陌上花开
    数论六·模线性方程组
    数论五·欧拉函数
  • 原文地址:https://www.cnblogs.com/-maybe/p/4853462.html
Copyright © 2011-2022 走看看