Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4]
,
the contiguous subarray [2,3]
has the largest product = 6
.
很显然是一个动态规划的问题,找到递归表达式就可以了,考虑到会有负负相乘的问题,所以应该维持一个最大的值以及一个最小的值,递归表达式如下所示:
1 maxLocal[i + 1] = max(max(maxLocal[i] * nums[i + 1], minLocal[i] * nums[i + 1]), nums[i + 1]); 2 minLocal[i + 1] = min(min(maxLocal[i] * nums[i + 1], minLocal[i] * nums[i + 1]), nums[i + 1]); 3 maxGlobal[i + 1] = max(maxGlobal[i], maxLocal[i + 1]);
代码如下所示:
1 class Solution { 2 public: 3 int maxProduct(vector<int>& nums) { 4 int sz = nums.size(); 5 if (sz == 0)return 0; 6 if (sz == 1)return nums[0]; 7 int maxP, minP, a, b, ret; 8 ret = maxP = minP = a = b = nums[0]; 9 for (int i = 1; i < sz; ++i){ 10 a = max(maxP * nums[i], minP * nums[i]); 11 b = min(maxP * nums[i], minP * nums[i]); 12 maxP = max(a, nums[i]); 13 minP = min(b, nums[i]); 14 ret = max(maxP, ret); 15 } 16 return ret; 17 } 18 19 };
java版本的如下所示,注意使用两个中间变量的原因是防止maxVal先直接更新了之后又被minVal所误用:
1 public class Solution { 2 public int maxProduct(int[] nums) { 3 int maxVal, minVal, ret, tmpMax, tmpMin; 4 maxVal = minVal = ret = tmpMax = tmpMin = nums[0]; 5 for(int i = 1; i < nums.length; ++i){ 6 tmpMax = Math.max(maxVal * nums[i], minVal * nums[i]); 7 tmpMin = Math.min(maxVal * nums[i], minVal * nums[i]); 8 maxVal = Math.max(tmpMax, nums[i]); 9 minVal = Math.min(tmpMin, nums[i]); 10 ret = Math.max(maxVal, ret); 11 } 12 return ret; 13 } 14 }