zoukankan      html  css  js  c++  java
  • POJ3246

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

     1 #include<algorithm>
     2 #include <cstdio>
     3 #include <cmath>
     4 using namespace std;
     5 int a[50001];
     6 int dp[50001][16];//2^16长度
     7 int DP[50001][16];
     8 int n,q;
     9 void ST()
    10 {
    11     for (int i = 1; i <=n ; ++i) {
    12         dp[i][0]=a[i];
    13         DP[i][0]=a[i];
    14     }
    15 
    16     for (int j = 1; (1<<j) <=n ; ++j) {
    17         for (int i = 1; i+(1<<j)-1 <= n ; ++i) {
    18             dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);//需要注意+的优先级高于<<
    19             DP[i][j]=max(DP[i][j-1],DP[i+(1<<(j-1))][j-1]);
    20         }
    21     }
    22 }
    23 int main()
    24 {
    25     scanf("%d%d",&n,&q);
    26     for (int i = 1; i <=n ; ++i) {
    27         scanf("%d",&a[i]);
    28     }
    29     ST();
    30     int x,y;
    31     for (int i = 0; i <q ; ++i) {
    32         scanf("%d%d",&x,&y);
    33         int m=floor(log((double)(y-x+1))/log(2.0));
    34         int MAX=max(DP[x][m],DP[y-(1<<m)+1][m]);
    35         int MIN=min(dp[x][m],dp[y-(1<<m)+1][m]);
    36         printf("%d
    ",MAX-MIN);
    37     }
    38     return 0;
    39 }
  • 相关阅读:
    Python面向对象5:类的常用魔术方法
    吴恩达机器学习笔记27-样本和直观理解2(Examples and Intuitions II)
    python之面向对象
    python之正则表达式
    python之模块
    python之函数
    python之基础
    python之入门
    Git+码云安装
    python,pycharm环境安装
  • 原文地址:https://www.cnblogs.com/-xiangyang/p/9400006.html
Copyright © 2011-2022 走看看