zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 60 (Rated for Div. 2) D. Magic Gems

    time limit per test3 seconds
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    Reziba has many magic gems. Each magic gem can be split into
    M
    M
    normal gems. The amount of space each magic (and normal) gem takes is
    1
    1
    unit. A normal gem cannot be split.
    Reziba wants to choose a set of magic gems and split some of them, so the total space occupied by the resulting set of gems is
    N
    N
    units. If a magic gem is chosen and split, it takes
    M
    M
    units of space (since it is split into
    M
    M
    gems); if a magic gem is not split, it takes
    1
    1
    unit.
    How many different configurations of the resulting set of gems can Reziba have, such that the total amount of space taken is
    N
    N
    units? Print the answer modulo
    1000000007
    1000000007
    (
    10
    9
    +7
    109+7
    ). Two configurations are considered different if the number of magic gems Reziba takes to form them differs, or the indices of gems Reziba has to split differ.
    Input
    The input contains a single line consisting of
    2
    2
    integers
    N
    N
    and
    M
    M
    (
    1≤N≤
    10
    18
    1≤N≤1018
    ,
    2≤M≤100
    2≤M≤100
    ).
    Output
    Print one integer, the total number of configurations of the resulting set of gems, given that the total amount of space taken is
    N
    N
    units. Print the answer modulo
    1000000007
    1000000007
    (
    10
    9
    +7
    109+7
    ).
    Examples
    Input
    Copy
    4 2
    Output
    Copy
    5
    Input
    Copy
    3 2
    Output
    Copy
    3
    Note
    In the first example each magic gem can split into
    2
    2
    normal gems, and we know that the total amount of gems are
    4
    4
    .
    Let
    1
    1
    denote a magic gem, and
    0
    0
    denote a normal gem.
    The total configurations you can have is:
    1111
    1111
    (None of the gems split);
    0011
    0011
    (First magic gem splits into
    2
    2
    normal gems);
    1001
    1001
    (Second magic gem splits into
    2
    2
    normal gems);
    1100
    1100
    (Third magic gem splits into
    2
    2
    normal gems);
    0000
    0000
    (First and second magic gems split into total
    4
    4
    normal gems).
    Hence, answer is
    5
    5
    .

    题解:有一些魔法宝石,魔法宝石可以分成m个普通宝石,每个宝石(包括魔法宝石)占用1个空间,让你求占用n个空间的方法有几种,有不同数量的魔法宝石和不同分法的方法算不同的方法,

    根据样例可得递推式:f[n]=f[n-1]+f[n-m],最后一个不分加上最后一个分.

    因为n比较大,可以用矩阵快速幂来求,这里当n<m,只有一种方法,n==m时有2种方法.

    #include <bits/stdc++.h>
    const int MOD=1e9+7;
    const int M=105;
    using namespace std;
    typedef long long ll;
    struct matrix{
        ll m[M][M];
    }ans,res;
    matrix mul(matrix a,matrix b,int n){
        matrix tmp;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                tmp.m[i][j]=0;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                for(int k=1;k<=n;k++){
                    tmp.m[i][j]+=a.m[i][k]*b.m[k][j];
                    tmp.m[i][j]%=MOD;
                }
        return tmp;
    }
    void quickpower(ll n,int m){
        for(int i=1;i<=m;i++){
            res.m[i+1][i]=1;
            for(int j=1;j<=m;j++){
                if(i==j) ans.m[i][j]=1; else ans.m[i][j]=0;
            }
        }
        res.m[1][m]=1;res.m[m][m]=1;
        while(n){
            if(n&1){
                ans=mul(ans,res,m);
            }
            res=mul(res,res,m);
            n>>=1;
        }
    }
    int main(){
        ll n;
        int m;
        scanf("%I64d%d",&n,&m);
        if(n<m){
            printf("1
    ");
            return 0;
        }
        matrix a;
        for(int i=1;i<m;i++) a.m[1][i]=1;
        a.m[1][m]=2;
        quickpower(n-m,m);
        a=mul(a,ans,m);
        printf("%I64d
    ",a.m[1][m]);
        //cout << "Hello world!" << endl;
        return 0;
    }
    
  • 相关阅读:
    171. Excel Sheet Column Number (Easy)
    349. Intersection of Two Arrays (Easy)
    453. Minimum Moves to Equal Array Elements (Easy)
    657. Judge Route Circle (Easy)
    CSS笔记
    保存页面状态
    UI开发总结
    ubuntu 下配置munin
    反向代理配置
    JavaScript 高级程序设计第二版
  • 原文地址:https://www.cnblogs.com/-yjun/p/10427824.html
Copyright © 2011-2022 走看看