zoukankan      html  css  js  c++  java
  • 环、商环、整数环

    1、Ring定义

    R是一个含有两种复合运算+、*的集合,若满足

    (1)(R,+)是一个交换群

    (2)*运算满足结合律。且R中含有一个乘法运算的单位元e

    (3)满足分配律 a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c

    R被称为一个环,乘法部分满足交换律的环被称为交换环。

    2、把Z和nZ看作两个群,那么Z/nZ就是一个商群。i={i+kn|k∈Z},这个集合为mod意义下的整合。零元和单位元分别是0和1。

    3、整数环:在交换环的基础上,并满足没有零因子(如此,集合内任意两个元素乘积均不等于0)。他的单位元1,-1。

    4、子环:如果对于一个 R 的子集合 S ,有e∈S,并且 S 本身对于 +-* 封闭,则 S 称为 R 的一个子环。比如说z(+,-,*)就是R(+,-,*)的一个子环。

    Z[X]----->Z/nZ[X]就是一个环同态,其映射的意义就是把整数多项式环的系数模n,得到模多项式环。

    5、域:在环的基础上,如果对于每一个环的非零元素 a ,都存在一个元素 b ,使得 ab=ba=e ,则称这个环为一个域。

    6、商环:R/I={a+I | a∈R}

    参考抽象代数|笔记整理(6)——环,多项式环,理想 - 知乎 (zhihu.com)

  • 相关阅读:
    ios本地推送
    ios BUG
    性能优化
    数据结构设计
    代码的可维护性
    NSMutalbleDictionary
    NSDictionary
    NSMutableArray
    java 容器
    Java bug
  • 原文地址:https://www.cnblogs.com/0211ji/p/15582098.html
Copyright © 2011-2022 走看看