zoukankan      html  css  js  c++  java
  • 数据采集第四次作业

    作业一:

        要求:熟练掌握 scrapy 中 Item、Pipeline 数据的序列化输出方法;Scrapy+Xpath+MySQL数据库存储技术路线爬取当当网站图书数据
        候选网站:http://www.dangdang.com/
        关键词:学生自由选择
        输出信息:MYSQL的输出信息如下
    

    代码

    mysql表格结构:

    book.py

    import scrapy
    from ..items import DangdangItem
    from bs4 import BeautifulSoup
    from bs4 import UnicodeDammit
    class BookSpider(scrapy.Spider):
        name = 'book'
        key = "python"
        start_url = 'http://search.dangdang.com/'
        def start_requests(self):
            url = BookSpider.start_url + "?key=" + BookSpider.key+"act=input"
            yield scrapy.Request(url=url, callback=self.parse)
        def parse(self, response):
            try:
                dammit = UnicodeDammit(response.body,["utf-8","gdk"])
                data =dammit.unicode_markup
                selector = scrapy.Selector(text=data)
                lis = selector.xpath("//li['@ddt-pit'][starts-with(@class,'line')]")
                for li in lis:
                    title = li.xpath("./a[position()=1]/@title").extract_first()
                    price = li.xpath("./p[@class='price']/span[@class='search_now_price']/text()").extract_first()
                    author = li.xpath("./p[@class='search_book_author']/span[position()=1]/a/@title").extract_first()
                    date = li.xpath("./p[@class='search_book_author']/span[position()=last-1]/text()").extract_first()
                    publisher =li.xpath("./p[@class='search_book_author']/span[position()=last()]/a/@title").extract_first()
                    detail = li.xpath("./p[@class='detail']/text()").extract_first()
                    item = DangdangItem()
                    item["title"]=title.strip()if title else""
                    item["author"]=author.strip()if author else""
                    item["publisher"]=publisher.strip()if publisher else""
                    item["date"]=date.strip()[1:]if date else""
                    item["price"]=price.strip()if price else""
                    item["detail"]=detail.strip()if detail else""
                    yield item
                link = selector.xpath("//div[@class='paging']/ul[@name='Fy']/li[@class='next']/a/@href").extract_first()
                if link:
                    url=response.urljoin(link)
            except Exception as err:
                print(err)
            pass
    

    items.py

    import scrapy
    class DangdangItem(scrapy.Item):
        title = scrapy.Field()
        author = scrapy.Field()
        date = scrapy.Field()
        publisher = scrapy.Field()
        detail = scrapy.Field()
        price = scrapy.Field()
    

    pipeline.py

    import pymysql
    class DangdangPipeline(object):
        def open_spider(self, spider):
            print("opened")
            try:
                self.con = pymysql.connect(host="127.0.0.1", port=3306, user="root", passwd="20201006Wu", db="book",
                                           charset="utf8")  # 链接数据库,db要是自己建的数据库
                self.cursor = self.con.cursor(pymysql.cursors.DictCursor)
                self.cursor.execute("delete from book")  # 删除表格的原来内容
                self.opened = True  # 执行打开数据库
                self.count = 0  # 计数
            except Exception as error:
                print(error)
                self.opened = False  # 不执行打开数据库
        def process_item(self, item, spider):
            try:
                print(item["title"], item["author"], item["publisher"], item["date"], item["price"], item["detail"])
                if self.opened:
                    self.cursor.execute(
                        "insert into book(bTitle,bAuthor,bPublisher,bDate,bPrice,bDetail)values(%s,%s,%s,%s,%s,%s)",
                        (item["title"], item["author"], item["publisher"], item["date"], item["price"], item["detail"]))
                    self.count +=1
            except Exception as e:
                print(e)
            return item
        def close_spider(self, spider):
            if self.opened:
                self.con.commit()
                self.con.close()
                self.opened = False
                print("closed")
                print("爬取了", self.count, "本书")
    
    

    settings.py

    BOT_NAME = 'dangdang'
    ROBOTSTXT_OBEY = False
    SPIDER_MODULES = ['dangdang.spiders']
    NEWSPIDER_MODULE = 'dangdang.spiders'
    ITEM_PIPELINES = {
        'dangdang.pipelines.DangdangPipeline': 300,
    }
    

    run.py

    from scrapy import cmdline
    cmdline.execute("scrapy crawl book -s LOG_ENABLED=False".split())
    


    心得

    基本上都是书上的代码,重要的是如何理解这些操作,后面的作业需要这些基础,代码部分有些注释

    作业二:

        要求:熟练掌握 scrapy 中 Item、Pipeline 数据的序列化输出方法;Scrapy+Xpath+MySQL数据库存储技术路线爬取股票相关信息
        候选网站:东方财富网:https://www.eastmoney.com/        
                 新浪股票:http://finance.sina.com.cn/stock/
        输出信息:MYSQL数据库存储和输出格式如下,表头应是英文命名例如:序号id,股票代码:bStockNo……,由同学们自行定义设计表头:
    

    代码

    mysql表格建立:

    stock.py

    import scrapy
    from ..items import JsstockItem
    from bs4 import BeautifulSoup
    from bs4 import UnicodeDammit
    import re
    class StockSpider(scrapy.Spider):
        name = 'stock'
        start_url = 'http://82.push2.eastmoney.com/api/qt/clist/get?cb=jQuery1124007929044454484524_1601878281258&pn=1&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&fid=f26&fs=m:1+t:2,m:1+t:23&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152&_=1601536578736'
        def start_requests(self):
            url = StockSpider.start_url
            yield scrapy.Request(url=url, callback=self.parse)
        # 初始网址由于之前写的比较混乱所以就用page=1来代替不做翻页操作
        def parse(self, response):
            count = 0
            pat = '"diff":[(.*?)]'  # 因为之前是用正则表达式
            data = re.compile(pat, re.S).findall(response.text)  # 获取数据
            data = data[0].strip("{").strip("}").split('},{')  # 一页股票数据
            for i in range(len(data)):
                data_one = data[i].replace('"', "")  # 相当于一条记录
                count += 1
                item = JsstockItem()  # 获取信息定义为item
                stat = data_one.split(',')  # 数据所在的位置
                # 接下来要做的就是一一对应传参
                item['count'] = count
                name = stat[13].split(":")[1]
                item['name'] = name
                num = stat[11].split(":")[1]
                item['num'] = num
                lastest_pri = stat[1].split(":")[1]
                item['lastest_pri'] = lastest_pri
                dzf = stat[2].split(":")[1]
                item['dzf'] = dzf
                dze = stat[3].split(":")[1]
                item['dze'] = dze
                cjl = stat[4].split(":")[1]
                item['cjl'] = cjl
                cje = stat[5].split(":")[1]
                item['cje'] = cje
                zf = stat[6].split(":")[1]
                item['zf'] = zf
                top = stat[14].split(":")[1]
                item['top'] = top
                low = stat[15].split(":")[1]
                item['low'] = low
                today = stat[16].split(":")[1]
                item['today'] = today
                yestd = stat[17].split(":")[1]
                item['yestd'] = yestd
                yield item
    

    items.py

    import scrapy
    class JsstockItem(scrapy.Item):
        # 定义变量
        count = scrapy.Field()
        name = scrapy.Field()
        num = scrapy.Field()
        lastest_pri = scrapy.Field()
        dzf = scrapy.Field()
        dze = scrapy.Field()
        cjl = scrapy.Field()
        cje = scrapy.Field()
        zf = scrapy.Field()
        top = scrapy.Field()
        low = scrapy.Field()
        today = scrapy.Field()
        yestd = scrapy.Field()
    

    pipeline.py

    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
    
    
    # useful for handling different item types with a single interface
    import pymysql
    
    
    class JsstockPipeline:
        def open_spider(self, spider):
            print("opened")
            try:
                self.con = pymysql.connect(host="127.0.0.1", port=3306, user="root", passwd="20201006Wu", db="jsstock",
                                           charset="utf8")  # 链接数据库,db要是自己建的数据库
                self.cursor = self.con.cursor(pymysql.cursors.DictCursor)
                self.cursor.execute("delete from stock")  # 删除表格的原来内容
                self.opened = True  # 执行打开数据库
                self.count = 0  # 总计数
            except Exception as error:
                print(error)
                self.opened = False  # 不执行打开数据库
    
        def process_item(self, item, spider):
            try:
                print(item['count'], item['name'], item['num'], item['lastest_pri'], item['dzf'], item['dze'], item['cjl'],
                      item['cje'], item['zf'], item['top'], item['low'], item['today'], item['yestd'])
                if self.opened:
                    self.cursor.execute(
                        "insert into stock(count,stockname,num,lastest_pri,dzf, dze, cjl,cje, zf, top,low,today,yestd) values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)",
                        (item["count"], item["name"], item["num"], item["lastest_pri"], item["dzf"], item["dze"],
                         item["cjl"],
                         item["cje"], item["zf"], item["top"], item["low"], item["today"], item["yestd"])
                    )
                    self.count += 1
            except Exception as e:
                print(e)
            return item
    
        def close_spider(self, spider):
            if self.opened:
                self.con.commit()
                self.con.close()
                self.opened = False
                print("closed")
                print("爬取了", self.count, "股票")
    

    settings.py

    BOT_NAME = 'jsstock'
    ROBOTSTXT_OBEY = False
    ITEM_PIPELINES = {
        'jsstock.pipelines.JsstockPipeline': 300,
    }
    SPIDER_MODULES = ['jsstock.spiders']
    NEWSPIDER_MODULE = 'jsstock.spiders'
    

    run.py

    from scrapy import cmdline
    cmdline.execute("scrapy crawl stock -s LOG_ENABLED=False".split())
    


    心得

    主要是pipeline.py是需要根据上面作业①的理解基础上实现出来,
    其他的部分与实验三是可以直接转移的,
    后续短暂的调试了一下基本正确的结果就会出来了

    作业三:

        要求:熟练掌握 scrapy 中 Item、Pipeline 数据的序列化输出方法;使用scrapy框架+Xpath+MySQL数据库存储技术路线爬取外汇网站数据。
        候选网站:招商银行网:http://fx.cmbchina.com/hq/
        输出信息:MYSQL数据库存储和输出格式
    

    代码

    mysql建立表格结构:

    cmbbank.py

    import scrapy
    from ..items import CmbbankItem
    from bs4 import BeautifulSoup
    from bs4 import UnicodeDammit
    
    
    class CmbchinaSpider(scrapy.Spider):
        name = 'cmbchina'
        start_url = 'http://fx.cmbchina.com/hq/'
    
        def start_requests(self):
            url = CmbchinaSpider.start_url
            yield scrapy.Request(url=url, callback=self.parse)
    
        def parse(self, response):
            dammit = UnicodeDammit(response.body, ["utf-8", "gdk"])
            data = dammit.unicode_markup
            selector = scrapy.Selector(text=data)
            count = 1
            # 找到要存储的信息
            lis = selector.xpath("//div[@id='realRateInfo']/table/tr")
            for li in lis:
                Id = count
                count += 1
                Currency = li.xpath("./td[position()=1]/text()").extract_first()
                Currency =str(Currency).strip()
                TSP = li.xpath("./td[position()=4]/text()").extract_first()
                TSP =str(TSP).strip()
                CSP = li.xpath("./td[position()=5]/text()").extract_first()
                CSP = str(CSP).strip()
                TBP = li.xpath("./td[position()=6]/text()").extract_first()
                TBP = str(TBP).strip()
                CBP = li.xpath("./td[position()=7]/text()").extract_first()
                CBP = str(CBP).strip()
                Time = li.xpath("./td[position()=8]/text()").extract_first()
                Time=str(Time).strip()
                item = CmbbankItem()
                item["Id"] = Id
                item["Currency"] = Currency
                item["TSP"] = TSP
                item["CSP"] = CSP
                item["TBP"] = TBP
                item["CBP"] = CBP
                item["Time"] = Time
                yield item
    
    

    items.py

    import scrapy
    class CmbbankItem(scrapy.Item):
        Id= scrapy.Field()
        Currency= scrapy.Field()
        TSP= scrapy.Field()
        CSP= scrapy.Field()
        TBP= scrapy.Field()
        CBP= scrapy.Field()
        Time= scrapy.Field()
    

    setting.py

    ITEM_PIPELINES = {
        'cmbbank.pipelines.CmbbankPipeline': 300,
    }
    BOT_NAME = 'cmbbank'
    ROBOTSTXT_OBEY = False
    SPIDER_MODULES = ['cmbbank.spiders']
    NEWSPIDER_MODULE = 'cmbbank.spiders'
    

    pipelines.py

    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
    
    
    # useful for handling different item types with a single interface
    import pymysql
    class CmbbankPipeline:
        def open_spider(self, spider):
            print("opened")
            try:
                self.con = pymysql.connect(host="127.0.0.1", port=3306, user="root", passwd="20201006Wu", db="cmb",
                                           charset="utf8")  # 链接数据库,db要是自己建的数据库
                self.cursor = self.con.cursor(pymysql.cursors.DictCursor)
                self.cursor.execute("delete from cmb")  # 删除表格的原来内容
                self.opened = True  # 执行打开数据库
                self.count = 0  # 计数
            except Exception as error:
                print(error)
                self.opened = False  # 不执行打开数据库
    
        def process_item(self, item, spider):
            try:
                print(item["Id"], item["Currency"], item["TSP"], item["CSP"], item["TBP"], item["CBP"],item["Time"])
                if self.opened:
                    self.cursor.execute(
                        "insert into cmb(Id,Currency,TSP,CSP,TBP,CBP,latestTime)values(%s,%s,%s,%s,%s,%s,%s)",
                        (item["Id"], item["Currency"], item["TSP"], item["CSP"], item["TBP"], item["CBP"],item["Time"]))
                    self.count +=1
            except Exception as e:
                print(e)
            return item
    
        def close_spider(self, spider):
            if self.opened:
                self.con.commit()
                self.con.close()
                self.opened = False
                print("closed")
                print("爬取了", self.count, "条招商银行信息")
    

    run.py

    from scrapy import cmdline
    cmdline.execute("scrapy crawl cmbchina -s LOG_ENABLED=False".split())
    


    心得

    最后一个可能花的时间更长一些,写出来很快,但是运行出准确的答案却耗时不少。原因可能如下:
    1.xpath的灵活运用可能欠缺,
    2.然后网页的html阅读起来是不难,但是自己理解可能与实际的网页还是有所偏差;
    3.xpath的寻找的时候多个条件直接显示none type,最后我是通过position一个个限制住,
    4.最大的收获可能就是在scrapy的框架进行调试吧!
    附上调试的中间图片:

  • 相关阅读:
    Linux 共享库
    使用Visual Studio(VS)开发Qt程序代码提示功能的实现(转)
    ZOJ 3469 Food Delivery(区间DP)
    POJ 2955 Brackets (区间DP)
    HDU 3555 Bomb(数位DP)
    HDU 2089 不要62(数位DP)
    UESTC 1307 windy数(数位DP)
    HDU 4352 XHXJ's LIS(数位DP)
    POJ 3252 Round Numbers(数位DP)
    HDU 2476 String painter (区间DP)
  • 原文地址:https://www.cnblogs.com/021800626-wyj/p/13903813.html
Copyright © 2011-2022 走看看