zoukankan      html  css  js  c++  java
  • deep_learning_Dropout

    吴恩达深度学习笔记(十一)—— dropout正则化

    主要内容:

    一、dropout正则化的思想

    二、dropout算法流程

    三、dropout的优缺点

    一、dropout正则化的思想

    在神经网络中,dropout是一种“玄学”的正则化方法,以减少过拟合的现象。它的主要思想就是:在训练神经网络的每一轮迭代中,随机地关闭一些神经元,以此降低神经网络的复杂程度:

     二、dropout算法流程

    1)对于第k层的结点,选择一个范围在(0,1]的数keep_prob,表明每一个结点的存在几率为keep_prob

    2)在每一轮迭代中,为第k层的所有结点随机分配一个范围在[0,1]的数D。如果某个结点的D小于等于keep_prob,那么这个结点在此轮迭代中能保存;否则,这个结点将在这轮迭代中被暂时删去,所谓删去,其实就是将该节点在这轮前向传播的输出值设为0。

    3)对于保存下来的点,还需要做一步操作:新输出值 = 原输出值/keep_prob。

    问:为何输出值要除以keep_prob呢?

    答:因为这样能保证第k层输出的期望不发生改变,或者说是保持第k层输出值的scale。

    4)以上是前向传播的过程,在反向传播中,同样需要对保留下来的结点的导数dA除以keep_prob。

    5)每一层的keep_prob可以不一样,其中输入层X一般不进行dropout,结点数大的隐藏层其keep_prob可以小一点以降低其复杂度。

    三、dropout的优缺点

    优点:使用dropout正则化的神经网络,不会过分依赖于某个或某些特征,使得权重分散。因为在每一轮迭代中隐藏层的任何一个结点都有可能被删除,那么原本属于它的权重就会被分配到其他结点上,多次迭代平均下来,就能降低对某个特征或者是某个结点的依赖了。

    缺点:损失函数在每一轮迭代中不一定是逐渐减小,因为此时的损失函数没有明确的定义。(这个不理解)

  • 相关阅读:
    关联本地代码的方式 HTTPS和SSH---Gitee码云
    详解elementUI表单的验证规则---vue(基本用法)
    vscode 设置缩进 4
    vue的图片懒加载
    A complete log of this run can be found in问题解决
    简单直观的搞懂Vue3的ref、reactive、toRef、toRefs
    vue-cli3.0 引入外部字体并使用
    迅为与龙芯强强联合匠心之作iTOP-2K1000开发板正式发布
    迅为RK3399开发板外接固态硬盘测试
    迅为i.MX6Q开发板Ubuntu20.04 Can通信
  • 原文地址:https://www.cnblogs.com/0405mxh/p/11603499.html
Copyright © 2011-2022 走看看