zoukankan      html  css  js  c++  java
  • 移植DM900C网卡驱动

    前面一节简单分析了Linux内核网卡驱动程序的框架,并编写了一个虚拟网卡驱动程序。这一节我们开始学习网卡芯片DM9000C,尝试将官方提供的DM900C网卡驱动程序移植到jz2440开发板使用的内核里。

    内核版本:Linux-3.4.2

    官方网卡驱动版本:2.09


    1、DM900C连接方式

    DM900C和S3C2440之间的连接是以内存访问接口的方式进行连接的,连接方式如上图所示:

    • SD0~SD15:16位数据线,连接到S3C2440的16位数据线上
    • CMD命令线,连接到S3C2440的第3条地址线上
    • INT:中断引脚,接S3C2440的GPF7引脚
    • IOR#:读使能信号,接S3C2440的nOE引脚
    • IOW#:写使能信号,接S3C2440的nWE引脚
    • CS#:片选信号,接S3C2440的Bank4的片选引脚

    DM9000C连接到S3C2440的bank4位置,bank4的访问区间位于0x20000000~0x28000000,当访问地址位于bank4所在的地址区间内,nGCS4片选信号被自动拉低,DM9000C芯片访问使能。至于DM9000C的具体访问地址在哪里呢?这个还需要再结合CMD命令线连接的地址线来分析。

    S3C2440的地址线LADDR2连接到DM9000C的CMD引脚,我们知道CMD命令线信号状态决定对DM9000C的访问类型,当CMD为高表示SD传输的是数据,CMD为低表示传输的是地址。因此,当主控准备向DM900C写数据时,只需将要写的数据信息写入到0x20000004地址中;当主控准备向DM900C写入访问地址时,只需将要访问的地址信息写入到0x20000000地址

    例如:DM9000C芯片内的28H~29H地址为厂商ID寄存器,如果我们想获取厂商ID信息,只需先向0x20000000地址中写入寄存器0x28,然后读取0x20000004地址内容,就能获取厂商ID信息。

    当DM9000C收到外部数据时,会将数据存放到内部数据寄存器中,然后通过INT引脚产生一个上升沿中断,通知S3C2440读取数据信息。同样的,当DM9000C将主控传过来的数据信息发送出去后,也会通过INT引脚产生一个中断,通知主控数据已经传入完成。

    2、官方驱动程序移植

    修改dm900c芯片官方提供的驱动程序,使其适应自己开发板硬件,这里移植的官方驱动程序的版本是2.09

    2.1 删除入口函数前的条件编译

    入口函数前有个ifdef MODULE条件编译,如果未定义MODULE宏,不编译这部分。我们这里需要使用入口函数,所以删除这个ifdef宏。当然,也可以在前面使用define定义MODULE这个宏。

    2.2 修改入口、出口函数名,并修饰它们

    未避免和内核中的其它函数重名,修改入口、出口函数名

      init_module-->dm9000c_init

      cleanup_module-->dm9000c_exit

    最后使用module_init和module_exit修饰入口和出口函数

    2.3 修改驱动程序的硬件差异部分

    驱动程序的硬件差异部分主要可以概括为三部分:

    • DM9000C网卡的基地址
    • 使用的中断资源
    • 根据DM9000C的芯片特性,设置S3C2440内存控制器访问时序

    先来找出dm9000c的基地址在驱动程序中是在哪里描述的,从入口函数中开始进行查找。

    dm9000c_init

             |----->dmfe_probe

    入口函数中最终调用了dmfe_probe函数,dmfe_probe函数内容如下:

    struct net_device * __init dmfe_probe(void)
    {
        struct net_device *dev;
        
        ...
        dev= alloc_etherdev(sizeof(struct board_info));
        ...
        err = dmfe_probe1(dev);
        ...
        err = register_netdev(dev);
        ...
    }

    dmfe_probe函数中分配了net_device结构体,调用dmfe_probe函数后,最终注册了分配的net_device结构体。根据上一节的分析,可以知道net_device结构体就是为描述一个网卡设备抽象的,net_device结构体包含了网卡底层收发的函数等等,我们可以猜测dmfe_probe1函数中就是来初始化dm9000c硬件,根据硬件特性来设置net_device结构体的成员供上层使用。

    (注:alloc_etherdev(sizeof(struct board_info))函数除了分配了net_device结构体外,还额外分配了一块描述board_info信息的内存,这块内存在后面会使用到)

    继续来看dmfe_probe1函数

    在前面DM9000C连接方式中,我们已经说过,当主控想对DM900C读写数据时,需要将想要读写访问的地址信息先写入到0x20000000地址,然后再根据是读还是去写的需求去操作0x20000004地址。如是读操作,只需读取该地址内容,如是写操作只需将写的内容写到该地址中。

    上图,主控想获取DM9000的DM9KS_VID_L寄存器内容,先调用outb函数向iobase出写入寄存器地址,然后从iobase+4位置读取寄存器里的值。可以看出这个iobase变量就是我们DM9000C的基地址。

    找到了保存dm9000c的基地址变量,我们需要根据硬件特性设置iobase基地址,iobase的物理地址是0x20000000。iobase基地址的设置需要在调用dmfe_probe1函数之前,这里我们在入口函数处设置,并在出口函数中取消映射

    继续来看dmfe_probe1函数

    ① Linux-3.4.2内核中的net_device结构体中已经没有了priv成员,所以额外分配的board_info结构体内存不能使用priv访问。新内核中提供了netdev_priv函数去获取这块内存的起始地址。

    (注:官方提供dm9000驱动程序中有多处使用dev->priv获取分配board_info的初始地址,这些部分都需要统一替换成netdev_priv(dev))

    ② 注释掉这部分内容,这句语句判断读取的dm9000芯片的版本信息不在这些给定版本内直接返回。我们的dm9000芯片版本信息可能和这些不同,但操作方式是通用的,所以取消这部分判断。

    继续来看dmfe_probe1函数

    ① net_device的irq成员代表注册的中断号,所以irq描述中断号。这里我们这入口函数处设置irq,dm9000c的中断引脚连接s3c2440的外部中断7。

    当使用了register_netdev()注册了网卡驱动net_device后,在内核中使用ifconfig就会进入net_device->open成员函数申请中断,激活队列等。

    所以我们要修改open成员函数的申请中断函数,将触发中断改为“IRQF_TRIGGER_RISING”,上升沿触发

    ② Linux-3.4.2内核中对网卡进行操作的函数指针抽象到net_devices_ops结构体中,描述网卡设备的net_device结构体中的使用netdev_ops指针指向这部分内容,所以需要将老的接口修改成新内核的接口。

    官方提供的2.09驱动程序中dm9000_hash_table中使用的net_device的mc_list、mc_count成员,在新内核的net_device结构体中都不存在了,所以还需要修改dm9000_hash_table函数。

    将官方提供的dm9000_hash_table函数替换成以下内容,替换内容参考Linux-3.4.2内核自带的DM9000驱动程序中实现的

    static void
    dm9000_hash_table_unlocked(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        struct netdev_hw_addr *ha;
        int i, oft;
        u32 hash_val;
        u16 hash_table[4];
        u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
    
        //dm9000_dbg(db, 1, "entering %s
    ", __func__);
    
        for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
            iow(db, oft, dev->dev_addr[i]);
    
        /* Clear Hash Table */
        for (i = 0; i < 4; i++)
            hash_table[i] = 0x0;
    
        /* broadcast address */
        hash_table[3] = 0x8000;
    
        if (dev->flags & IFF_PROMISC)
            rcr |= RCR_PRMSC;
    
        if (dev->flags & IFF_ALLMULTI)
            rcr |= RCR_ALL;
    
        /* the multicast address in Hash Table : 64 bits */
        netdev_for_each_mc_addr(ha, dev) {
            hash_val = ether_crc_le(6, ha->addr) & 0x3f;
            hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
        }
    
        /* Write the hash table to MAC MD table */
        for (i = 0, oft = DM9000_MAR; i < 4; i++) {
            iow(db, oft++, hash_table[i]);
            iow(db, oft++, hash_table[i] >> 8);
        }
    
        iow(db, DM9000_RCR, rcr);
    }
    
    static void
    dm9000_hash_table(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        unsigned long flags;
    
        spin_lock_irqsave(&db->lock, flags);
        dm9000_hash_table_unlocked(dev);
        spin_unlock_irqrestore(&db->lock, flags);
    }

    Linux-3.4.2内核的ethtool_ops结构体中已经删除了.get_rx_csum、set_rx_csum、.get_tx_csum、.set_tx_csim等函数指针,这里我们需要注释掉defe_ethtool_ops结构体中的.get_rx_csum、set_rx_csum、.get_tx_csum、.set_tx_csim等函数指针的设置。

    根据dm9000c芯片的访问时序特性,设置s3c2440芯片内存控制器,优化访问操作。

    1)设置BWSCON寄存器

    • 设置ST4=0,不使用UB/LB(UB/LB:表示高字节与低字节数据是否分开传输)
    • 设置WS4=0,其中WAIT引脚为PE4,而我们DM9000C没有引脚接入PE4,所以禁止
    • 设置DW4=0x01,我们的DM9000C的数据线为16位

    2)设置BANLCON4寄存器

    需参考DM9000c芯片数据手册(HCLK=100MHZ,1个时钟等于10ns)

    • 设置Tacs=0,CS和CMD可以同时结束。表示bank4地址稳定多久后,CS片选才启动
    • 设置Tcos=0,CS片选后,多久才能使能读写
    • 设置Tacc=7,11个时钟 ,access cycle ,读写使能后,多久才能访问数据
    • 设置Tcoh=1,1个时钟,因为当DM9000的写信号取消后,数据线上的数据还需要至少3ns才消失(nOE读写取消后,片选需要维持多长时间)
    • 设置Tcah=0,CS和CMD可以同时结束。表示 CS片选取消后,地址需要维持多长时间

    代码如下图所示,在入口函数中设置

    3、编译测试

    1)编译之前,首先添加该驱动需要的内核头文件

    #include <linux/interrupt.h>
    #include "dm9000.h"

    2)将修改的驱动程序放入到内核源码树的drivers/net/ethernet/davicom文件夹中

    3)修改drivers/net/ethernet/davicom文件夹下的Makefile

    4)切换到内核源码的顶层目录,指向make uImage

    5)拷贝编译好的uImage文件到网络文件系统

    6)在uboot中使用nfs命令将新的内核加载到内存中

    nfs 0x30000000 192.168.1.100:/work/fs_digital_photo_self/uImage_net

    7) bootm启动内核,查看是否能正常挂载网络文件系统

    完整驱动程序

    /*
    
      dm9ks.c: Version 2.08 2007/02/12 
      
            A Davicom DM9000/DM9010 ISA NIC fast Ethernet driver for Linux.
    
        This program is free software; you can redistribute it and/or
        modify it under the terms of the GNU General Public License
        as published by the Free Software Foundation; either version 2
        of the License, or (at your option) any later version.
    
        This program is distributed in the hope that it will be useful,
        but WITHOUT ANY WARRANTY; without even the implied warranty of
        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
        GNU General Public License for more details.
    
    
      (C)Copyright 1997-2007 DAVICOM Semiconductor,Inc. All Rights Reserved.
    
    V2.00 Spenser - 01/10/2005
                - Modification for PXA270 MAINSTONE.
                - Modified dmfe_tx_done().
                - Add dmfe_timeout().
    V2.01    10/07/2005    -Modified dmfe_timer()
                -Dected network speed 10/100M
    V2.02    10/12/2005    -Use link change to chage db->Speed
                -dmfe_open() wait for Link OK  
    V2.03    11/22/2005    -Power-off and Power-on PHY in dmfe_init_dm9000()
                -support IOL
    V2.04    12/13/2005    -delay 1.6s between power-on and power-off in 
                 dmfe_init_dm9000()
                -set LED mode 1 in dmfe_init_dm9000()
                -add data bus driving capability in dmfe_init_dm9000()
                 (optional)
    10/3/2006    -Add DM8606 read/write function by MDC and MDIO
    V2.06    01/03/2007    -CONT_RX_PKT_CNT=0xFFFF
                -modify dmfe_tx_done function
                -check RX FIFO pointer
                -if using physical address, re-define I/O function
                -add db->cont_rx_pkt_cnt=0 at the front of dmfe_packet_receive()
    V2.08    02/12/2007    -module parameter macro
                2.4  MODULE_PARM
                2.6  module_param
                -remove #include <linux/config>
                  -fix dmfe_interrupt for kernel 2.6.20                  
    V2.09 05/24/2007    -support ethtool and mii-tool
    05/30/2007    -fix the driver bug when ifconfig eth0 (-)promisc and (-)allmulti.
    06/05/2007    -fix dm9000b issue(ex. 10M TX idle=65mA, 10M harmonic)
                -add flow control function (option)
    10/01/2007  -Add #include <asm/uaccess.h>
                -Modyfy dmfe_do_ioctl for kernel 2.6.7
    11/23/2007    -Add TDBUG to check TX FIFO pointer shift
                - Remove check_rx_ready() 
              - Add #define CHECKSUM to modify CHECKSUM function    
    12/20/2007  -Modify TX timeout routine(+)check TCR&0x01 
    
    */
    
    //#define CHECKSUM
    //#define TDBUG        /* check TX FIFO pointer */
    //#define RDBUG   /* check RX FIFO pointer */
    //#define DM8606
    
    #define DRV_NAME    "dm9KS"
    #define DRV_VERSION    "2.09"
    #define DRV_RELDATE    "2007-11-22"
    
    #ifdef MODVERSIONS
    #include <linux/modversions.h>
    #endif
    
    //#include <linux/config.h>
    #include <linux/init.h>                
    #include <linux/delay.h>
    #include <linux/module.h>
    #include <linux/ioport.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/skbuff.h>
    #include <linux/version.h>
    #include <asm/dma.h>
    #include <linux/spinlock.h>
    #include <linux/crc32.h>
    #include <linux/mii.h>
    #include <linux/ethtool.h>
    #include <asm/uaccess.h>
    #include <linux/interrupt.h>
    
    #ifdef CONFIG_ARCH_MAINSTONE
    #include <asm/io.h>
    #include <asm/hardware.h>
    #include <asm/irq.h>
    #endif
    
    #include "dm9000.h"
    
    /* Board/System/Debug information/definition ---------------- */
    
    #define DM9KS_ID        0x90000A46
    #define DM9010_ID        0x90100A46
    /*-------register name-----------------------*/
    #define DM9KS_NCR        0x00    /* Network control Reg.*/
    #define DM9KS_NSR        0x01    /* Network Status Reg.*/
    #define DM9KS_TCR        0x02    /* TX control Reg.*/
    #define DM9KS_RXCR        0x05    /* RX control Reg.*/
    #define DM9KS_BPTR        0x08
    #define DM9KS_FCTR        0x09
    #define DM9KS_FCR            0x0a
    #define DM9KS_EPCR        0x0b
    #define DM9KS_EPAR        0x0c
    #define DM9KS_EPDRL        0x0d
    #define DM9KS_EPDRH        0x0e
    #define DM9KS_GPR            0x1f    /* General purpose register */
    #define DM9KS_CHIPR        0x2c
    #define DM9KS_TCR2        0x2d
    #define DM9KS_SMCR        0x2f     /* Special Mode Control Reg.*/
    #define DM9KS_ETXCSR    0x30    /* Early Transmit control/status Reg.*/
    #define    DM9KS_TCCR        0x31    /* Checksum cntrol Reg. */
    #define DM9KS_RCSR        0x32    /* Receive Checksum status Reg.*/
    #define DM9KS_BUSCR        0x38
    #define DM9KS_MRCMDX    0xf0
    #define DM9KS_MRCMD        0xf2
    #define DM9KS_MDRAL        0xf4
    #define DM9KS_MDRAH        0xf5
    #define DM9KS_MWCMD        0xf8
    #define DM9KS_MDWAL        0xfa
    #define DM9KS_MDWAH        0xfb
    #define DM9KS_TXPLL        0xfc
    #define DM9KS_TXPLH        0xfd
    #define DM9KS_ISR            0xfe
    #define DM9KS_IMR            0xff
    /*---------------------------------------------*/
    #define DM9KS_REG05        0x30    /* SKIP_CRC/SKIP_LONG */ 
    #define DM9KS_REGFF        0xA3    /* IMR */
    #define DM9KS_DISINTR    0x80
    
    #define DM9KS_PHY            0x40    /* PHY address 0x01 */
    #define DM9KS_PKT_RDY        0x01    /* Packet ready to receive */
    
    /* Added for PXA of MAINSTONE */
    #ifdef CONFIG_ARCH_MAINSTONE
    #include <asm/arch/mainstone.h>
    #define DM9KS_MIN_IO        (MST_ETH_PHYS + 0x300)
    #define DM9KS_MAX_IO            (MST_ETH_PHYS + 0x370)
    #define DM9K_IRQ        MAINSTONE_IRQ(3)
    #else
    #define DM9KS_MIN_IO        0x300
    #define DM9KS_MAX_IO        0x370
    #define DM9KS_IRQ        3
    #endif
    
    #define DM9KS_VID_L        0x28
    #define DM9KS_VID_H        0x29
    #define DM9KS_PID_L        0x2A
    #define DM9KS_PID_H        0x2B
    
    #define DM9KS_RX_INTR        0x01
    #define DM9KS_TX_INTR        0x02
    #define DM9KS_LINK_INTR        0x20
    
    #define DM9KS_DWORD_MODE    1
    #define DM9KS_BYTE_MODE        2
    #define DM9KS_WORD_MODE        0
    
    #define TRUE            1
    #define FALSE            0
    /* Number of continuous Rx packets */
    #define CONT_RX_PKT_CNT        0xFFFF
    
    #define DMFE_TIMER_WUT  jiffies+(HZ*5)    /* timer wakeup time : 5 second */
    
    #ifdef DM9KS_DEBUG
    #define DMFE_DBUG(dbug_now, msg, vaule)
    if (dmfe_debug||dbug_now) printk(KERN_ERR "dmfe: %s %x
    ", msg, vaule)
    #else
    #define DMFE_DBUG(dbug_now, msg, vaule)
    if (dbug_now) printk(KERN_ERR "dmfe: %s %x
    ", msg, vaule)
    #endif
    
    #ifndef CONFIG_ARCH_MAINSTONE
    #pragma pack(push, 1)
    #endif
    
    typedef struct _RX_DESC
    {
        u8 rxbyte;
        u8 status;
        u16 length;
    }RX_DESC;
    
    typedef union{
        u8 buf[4];
        RX_DESC desc;
    } rx_t;
    #ifndef CONFIG_ARCH_MAINSTONE
    #pragma pack(pop)
    #endif
    
    enum DM9KS_PHY_mode {
        DM9KS_10MHD   = 0, 
        DM9KS_100MHD  = 1, 
        DM9KS_10MFD   = 4,
        DM9KS_100MFD  = 5, 
        DM9KS_AUTO    = 8, 
    };
    
    /* Structure/enum declaration ------------------------------- */
    typedef struct board_info { 
        u32 io_addr;/* Register I/O base address */
        u32 io_data;/* Data I/O address */
        u8 op_mode;/* PHY operation mode */
        u8 io_mode;/* 0:word, 2:byte */
        u8 Speed;    /* current speed */
        u8 chip_revision;
        int rx_csum;/* 0:disable, 1:enable */
        
        u32 reset_counter;/* counter: RESET */ 
        u32 reset_tx_timeout;/* RESET caused by TX Timeout */
        int tx_pkt_cnt;
        int cont_rx_pkt_cnt;/* current number of continuos rx packets  */
        struct net_device_stats stats;
        
        struct timer_list timer;
        unsigned char srom[128];
        spinlock_t lock;
        struct mii_if_info mii;
    } board_info_t;
    /* Global variable declaration ----------------------------- */
    /*static int dmfe_debug = 0;*/
    static struct net_device * dmfe_dev = NULL;
    static struct ethtool_ops dmfe_ethtool_ops;
    /* For module input parameter */
    static int mode       = DM9KS_AUTO;  
    static int media_mode = DM9KS_AUTO;
    static int  irq        = DM9KS_IRQ;
    static int iobase     = DM9KS_MIN_IO;
    
    #if 0  // use physical address; Not virtual address
    #ifdef outb
        #undef outb
    #endif
    #ifdef outw
        #undef outw
    #endif
    #ifdef outl
        #undef outl
    #endif
    #ifdef inb
        #undef inb
    #endif
    #ifdef inw
        #undef inw
    #endif
    #ifdef inl
        #undef inl
    #endif
    void outb(u8 reg, u32 ioaddr)
    {
        (*(volatile u8 *)(ioaddr)) = reg;
    }
    void outw(u16 reg, u32 ioaddr)
    {
        (*(volatile u16 *)(ioaddr)) = reg;
    }
    void outl(u32 reg, u32 ioaddr)
    {
        (*(volatile u32 *)(ioaddr)) = reg;
    }
    u8 inb(u32 ioaddr)
    {
        return (*(volatile u8 *)(ioaddr));
    }
    u16 inw(u32 ioaddr)
    {
        return (*(volatile u16 *)(ioaddr));
    }
    u32 inl(u32 ioaddr)
    {
        return (*(volatile u32 *)(ioaddr));
    }
    #endif
    
    /* function declaration ------------------------------------- */
    int dmfe_probe1(struct net_device *);
    static int dmfe_open(struct net_device *);
    static int dmfe_start_xmit(struct sk_buff *, struct net_device *);
    static void dmfe_tx_done(unsigned long);
    static void dmfe_packet_receive(struct net_device *);
    static int dmfe_stop(struct net_device *);
    static struct net_device_stats * dmfe_get_stats(struct net_device *); 
    static int dmfe_do_ioctl(struct net_device *, struct ifreq *, int);
    #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
    static void dmfe_interrupt(int , void *, struct pt_regs *); 
    #else
        #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
        static irqreturn_t dmfe_interrupt(int , void *, struct pt_regs *);
        #else
        static irqreturn_t dmfe_interrupt(int , void *);/* for kernel 2.6.20 */
        #endif
    #endif
    static void dmfe_timer(unsigned long);
    static void dmfe_init_dm9000(struct net_device *);
    static unsigned long cal_CRC(unsigned char *, unsigned int, u8);
    u8 ior(board_info_t *, int);
    void iow(board_info_t *, int, u8);
    static u16 phy_read(board_info_t *, int);
    static void phy_write(board_info_t *, int, u16);
    static u16 read_srom_word(board_info_t *, int);
    static void dm9000_hash_table(struct net_device *);
    static void dmfe_timeout(struct net_device *);
    static void dmfe_reset(struct net_device *);
    static int mdio_read(struct net_device *, int, int);
    static void mdio_write(struct net_device *, int, int, int);
    static void dmfe_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
    static int dmfe_get_settings(struct net_device *, struct ethtool_cmd *);
    static int dmfe_set_settings(struct net_device *, struct ethtool_cmd *);
    static u32 dmfe_get_link(struct net_device *);
    static int dmfe_nway_reset(struct net_device *);
    static uint32_t dmfe_get_rx_csum(struct net_device *);
    static uint32_t dmfe_get_tx_csum(struct net_device *);
    static int dmfe_set_rx_csum(struct net_device *, uint32_t );
    static int dmfe_set_tx_csum(struct net_device *, uint32_t );
    
    #ifdef DM8606
    #include "dm8606.h"
    #endif
    
    //DECLARE_TASKLET(dmfe_tx_tasklet,dmfe_tx_done,0);
    
    /* DM9000 network baord routine ---------------------------- */
    
    /*
      Search DM9000 board, allocate space and register it
    */
    
    struct net_device * __init dmfe_probe(void)
    {
        struct net_device *dev;
        int err;
        
        DMFE_DBUG(0, "dmfe_probe()",0);
    
    #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
        dev = init_etherdev(NULL, sizeof(struct board_info));
        //ether_setup(dev);        
    #else
        dev= alloc_etherdev(sizeof(struct board_info));
    #endif
    
        if(!dev)
            return ERR_PTR(-ENOMEM);
    
        //     SET_MODULE_OWNER(dev);
        err = dmfe_probe1(dev);
        if (err)
            goto out;
    #if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
        err = register_netdev(dev);
        if (err)
            goto out1;
    #endif
        return dev;
    out1:
        release_region(dev->base_addr,2);
    out:
    #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
        kfree(dev);
    #else
        free_netdev(dev);
    #endif
        return ERR_PTR(err);
    }
    
    static const struct net_device_ops dm9000c_netdev_ops = {
        .ndo_open        = dmfe_open,
        .ndo_stop        = dmfe_stop,
        .ndo_start_xmit        = dmfe_start_xmit,
        .ndo_tx_timeout        = dmfe_timeout,
        .ndo_set_rx_mode    = dm9000_hash_table,
        .ndo_do_ioctl        = dmfe_do_ioctl,
        .ndo_change_mtu        = eth_change_mtu,
        .ndo_get_stats      = dmfe_get_stats,
        //.ndo_set_features    = dm9000_set_features,
        .ndo_validate_addr    = eth_validate_addr,
        .ndo_set_mac_address    = eth_mac_addr,
    #ifdef CONFIG_NET_POLL_CONTROLLER
        .ndo_poll_controller    = dm9000_poll_controller,
    #endif
    };
    
    
    int __init dmfe_probe1(struct net_device *dev)
    {
        struct board_info *db;    /* Point a board information structure */
        u32 id_val;
        u16 i, dm9000_found = FALSE;
        u8 MAC_addr[6]={0x00,0x60,0x6E,0x33,0x44,0x55};
        u8 HasEEPROM=0,chip_info;
        DMFE_DBUG(0, "dmfe_probe1()",0);
    
        /* Search All DM9000 serial NIC */
        do {
            outb(DM9KS_VID_L, iobase);
            id_val = inb(iobase + 4);
            outb(DM9KS_VID_H, iobase);
            id_val |= inb(iobase + 4) << 8;
            outb(DM9KS_PID_L, iobase);
            id_val |= inb(iobase + 4) << 16;
            outb(DM9KS_PID_H, iobase);
            id_val |= inb(iobase + 4) << 24;
    
            if (id_val == DM9KS_ID || id_val == DM9010_ID) {
                
                /* Request IO from system */
                if(!request_region(iobase, 2, dev->name))
                    return -ENODEV;
    
                printk(KERN_ERR"<DM9KS> I/O: %x, VID: %x 
    ",iobase, id_val);
                dm9000_found = TRUE;
    
                /* Allocated board information structure */
                db = netdev_priv(dev);
                memset(db, 0, sizeof(struct board_info));
                
                dmfe_dev    = dev;
                db->io_addr  = iobase;
                db->io_data = iobase + 4;   
                db->chip_revision = ior(db, DM9KS_CHIPR);
                
                chip_info = ior(db,0x43);
                //if((db->chip_revision!=0x1A) || ((chip_info&(1<<5))!=0) || ((chip_info&(1<<2))!=1)) return -ENODEV;
                            
                /* driver system function */        
                dev->netdev_ops    = &dm9000c_netdev_ops;
                
                dev->base_addr         = iobase;
                dev->irq         = irq;
                //dev->open         = &dmfe_open;
                //dev->hard_start_xmit     = &dmfe_start_xmit;
                dev->watchdog_timeo    = 5*HZ;    
                //dev->tx_timeout        = dmfe_timeout;
                //dev->stop         = &dmfe_stop;
                //dev->get_stats         = &dmfe_get_stats;
                //dev->set_multicast_list = &dm9000_hash_table;
                //dev->do_ioctl         = &dmfe_do_ioctl;
    #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,28)
                dev->ethtool_ops = &dmfe_ethtool_ops;
    #endif
    #ifdef CHECKSUM
                //dev->features |=  NETIF_F_IP_CSUM;
                dev->features |=  NETIF_F_IP_CSUM|NETIF_F_SG;
    #endif
                db->mii.dev = dev;
                db->mii.mdio_read = mdio_read;
                db->mii.mdio_write = mdio_write;
                db->mii.phy_id = 1;
    #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20)
                db->mii.phy_id_mask = 0x1F; 
                db->mii.reg_num_mask = 0x1F; 
    #endif
                //db->msg_enable =(debug == 0 ? DMFE_DEF_MSG_ENABLE : ((1 << debug) - 1));
                
                /* Read SROM content */
                for (i=0; i<64; i++)
                    ((u16 *)db->srom)[i] = read_srom_word(db, i);
    
                /* Get the PID and VID from EEPROM to check */
                id_val = (((u16 *)db->srom)[4])|(((u16 *)db->srom)[5]<<16); 
                printk("id_val=%x
    ", id_val);
                if (id_val == DM9KS_ID || id_val == DM9010_ID) 
                    HasEEPROM =1;
                
                /* Set Node Address */
                for (i=0; i<6; i++)
                {
                    if (HasEEPROM) /* use EEPROM */
                        dev->dev_addr[i] = db->srom[i];
                    else    /* No EEPROM */
                        dev->dev_addr[i] = MAC_addr[i];
                }
            }//end of if()
            iobase += 0x10;
        }while(!dm9000_found && iobase <= DM9KS_MAX_IO);
    
        return dm9000_found ? 0:-ENODEV;
    }
    
    
    /*
      Open the interface.
      The interface is opened whenever "ifconfig" actives it.
    */
    static int dmfe_open(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        u8 reg_nsr;
        int i;
        DMFE_DBUG(0, "dmfe_open", 0);
    
        if (request_irq(dev->irq,&dmfe_interrupt,IRQF_TRIGGER_RISING,dev->name,dev)) 
            return -EAGAIN;
    
        /* Initilize DM910X board */
        dmfe_init_dm9000(dev);
    #ifdef DM8606
        // control DM8606
        printk("[8606]reg0=0x%04x
    ",dm8606_read(db,0));
        printk("[8606]reg1=0x%04x
    ",dm8606_read(db,0x1));
    #endif 
        /* Init driver variable */
        db->reset_counter     = 0;
        db->reset_tx_timeout     = 0;
        db->cont_rx_pkt_cnt    = 0;
        
        /* check link state and media speed */
        db->Speed =10;
        i=0;
        do {
            reg_nsr = ior(db,DM9KS_NSR);
            if(reg_nsr & 0x40) /* link OK!! */
            {
                /* wait for detected Speed */
                mdelay(200);
                reg_nsr = ior(db,DM9KS_NSR);
                if(reg_nsr & 0x80)
                    db->Speed =10;
                else
                    db->Speed =100;
                break;
            }
            i++;
            mdelay(1);
        }while(i<3000);    /* wait 3 second  */
        //printk("i=%d  Speed=%d
    ",i,db->Speed);    
        /* set and active a timer process */
        init_timer(&db->timer);
        db->timer.expires     = DMFE_TIMER_WUT;
        db->timer.data         = (unsigned long)dev;
        db->timer.function     = &dmfe_timer;
        add_timer(&db->timer);    //Move to DM9000 initiallization was finished.
         
        netif_start_queue(dev);
    
        return 0;
    }
    
    /* Set PHY operationg mode
    */
    static void set_PHY_mode(board_info_t *db)
    {
    #ifndef DM8606
        u16 phy_reg0 = 0x1000;/* Auto-negotiation*/
        u16 phy_reg4 = 0x01e1;
    
        if ( !(db->op_mode & DM9KS_AUTO) ) // op_mode didn't auto sense */
        { 
            switch(db->op_mode) {
                case DM9KS_10MHD:  phy_reg4 = 0x21; 
                                           phy_reg0 = 0x1000;
                           break;
                case DM9KS_10MFD:  phy_reg4 = 0x41; 
                           phy_reg0 = 0x1100;
                                           break;
                case DM9KS_100MHD: phy_reg4 = 0x81; 
                           phy_reg0 = 0x3000;
                               break;
                case DM9KS_100MFD: phy_reg4 = 0x101; 
                           phy_reg0 = 0x3100;
                              break;
                default: 
                           break;
            } // end of switch
        } // end of if
    #ifdef FLOW_CONTROL
        phy_write(db, 4, phy_reg4|(1<<10));
    #else
        phy_write(db, 4, phy_reg4);
    #endif //end of FLOW_CONTROL
        phy_write(db, 0, phy_reg0|0x200);
    #else
        /* Fiber mode */
        phy_write(db, 16, 0x4014);
        phy_write(db, 0, 0x2100);
    #endif //end of DM8606
    
        if (db->chip_revision == 0x1A)
        {
            //set 10M TX idle =65mA (TX 100% utility is 160mA)
            phy_write(db,20, phy_read(db,20)|(1<<11)|(1<<10));
            
            //:fix harmonic
            //For short code:
            //PHY_REG 27 (1Bh) <- 0000h
            phy_write(db, 27, 0x0000);
            //PHY_REG 27 (1Bh) <- AA00h
            phy_write(db, 27, 0xaa00);
    
            //PHY_REG 27 (1Bh) <- 0017h
            phy_write(db, 27, 0x0017);
            //PHY_REG 27 (1Bh) <- AA17h
            phy_write(db, 27, 0xaa17);
    
            //PHY_REG 27 (1Bh) <- 002Fh
            phy_write(db, 27, 0x002f);
            //PHY_REG 27 (1Bh) <- AA2Fh
            phy_write(db, 27, 0xaa2f);
            
            //PHY_REG 27 (1Bh) <- 0037h
            phy_write(db, 27, 0x0037);
            //PHY_REG 27 (1Bh) <- AA37h
            phy_write(db, 27, 0xaa37);
            
            //PHY_REG 27 (1Bh) <- 0040h
            phy_write(db, 27, 0x0040);
            //PHY_REG 27 (1Bh) <- AA40h
            phy_write(db, 27, 0xaa40);
            
            //For long code:
            //PHY_REG 27 (1Bh) <- 0050h
            phy_write(db, 27, 0x0050);
            //PHY_REG 27 (1Bh) <- AA50h
            phy_write(db, 27, 0xaa50);
            
            //PHY_REG 27 (1Bh) <- 006Bh
            phy_write(db, 27, 0x006b);
            //PHY_REG 27 (1Bh) <- AA6Bh
            phy_write(db, 27, 0xaa6b);
            
            //PHY_REG 27 (1Bh) <- 007Dh
            phy_write(db, 27, 0x007d);
            //PHY_REG 27 (1Bh) <- AA7Dh
            phy_write(db, 27, 0xaa7d);
            
            //PHY_REG 27 (1Bh) <- 008Dh
            phy_write(db, 27, 0x008d);
            //PHY_REG 27 (1Bh) <- AA8Dh
            phy_write(db, 27, 0xaa8d);
            
            //PHY_REG 27 (1Bh) <- 009Ch
            phy_write(db, 27, 0x009c);
            //PHY_REG 27 (1Bh) <- AA9Ch
            phy_write(db, 27, 0xaa9c);
            
            //PHY_REG 27 (1Bh) <- 00A3h
            phy_write(db, 27, 0x00a3);
            //PHY_REG 27 (1Bh) <- AAA3h
            phy_write(db, 27, 0xaaa3);
            
            //PHY_REG 27 (1Bh) <- 00B1h
            phy_write(db, 27, 0x00b1);
            //PHY_REG 27 (1Bh) <- AAB1h
            phy_write(db, 27, 0xaab1);
            
            //PHY_REG 27 (1Bh) <- 00C0h
            phy_write(db, 27, 0x00c0);
            //PHY_REG 27 (1Bh) <- AAC0h
            phy_write(db, 27, 0xaac0);
            
            //PHY_REG 27 (1Bh) <- 00D2h
            phy_write(db, 27, 0x00d2);
            //PHY_REG 27 (1Bh) <- AAD2h
            phy_write(db, 27, 0xaad2);
            
            //PHY_REG 27 (1Bh) <- 00E0h
            phy_write(db, 27, 0x00e0);
            //PHY_REG 27 (1Bh) <- AAE0h
            phy_write(db, 27, 0xaae0);
            //PHY_REG 27 (1Bh) <- 0000h
            phy_write(db, 27, 0x0000);
        }
    }
    
    /* 
        Initilize dm9000 board
    */
    static void dmfe_init_dm9000(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        DMFE_DBUG(0, "dmfe_init_dm9000()", 0);
    
        spin_lock_init(&db->lock);
        
        iow(db, DM9KS_GPR, 0);    /* GPR (reg_1Fh)bit GPIO0=0 pre-activate PHY */
        mdelay(20);        /* wait for PHY power-on ready */
    
        /* do a software reset and wait 20us */
        iow(db, DM9KS_NCR, 3);
        udelay(20);        /* wait 20us at least for software reset ok */
        iow(db, DM9KS_NCR, 3);    /* NCR (reg_00h) bit[0] RST=1 & Loopback=1, reset on */
        udelay(20);        /* wait 20us at least for software reset ok */
    
        /* I/O mode */
        db->io_mode = ior(db, DM9KS_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
    
        /* Set PHY */
        db->op_mode = media_mode;
        set_PHY_mode(db);
    
        /* Program operating register */
        iow(db, DM9KS_NCR, 0);
        iow(db, DM9KS_TCR, 0);        /* TX Polling clear */
        iow(db, DM9KS_BPTR, 0x3f);    /* Less 3kb, 600us */
        iow(db, DM9KS_SMCR, 0);        /* Special Mode */
        iow(db, DM9KS_NSR, 0x2c);    /* clear TX status */
        iow(db, DM9KS_ISR, 0x0f);     /* Clear interrupt status */
        iow(db, DM9KS_TCR2, 0x80);    /* Set LED mode 1 */
        if (db->chip_revision == 0x1A){ 
            /* Data bus current driving/sinking capability  */
            iow(db, DM9KS_BUSCR, 0x01);    /* default: 2mA */
        }
    #ifdef FLOW_CONTROL
        iow(db, DM9KS_BPTR, 0x37);
        iow(db, DM9KS_FCTR, 0x38);
        iow(db, DM9KS_FCR, 0x29);
    #endif
    
    #ifdef DM8606
        iow(db,0x34,1);
    #endif
    
        if (dev->features & NETIF_F_HW_CSUM){
            printk(KERN_INFO "DM9KS:enable TX checksum
    ");
            iow(db, DM9KS_TCCR, 0x07);    /* TX UDP/TCP/IP checksum enable */
        }
        if (db->rx_csum){
            printk(KERN_INFO "DM9KS:enable RX checksum
    ");
            iow(db, DM9KS_RCSR, 0x02);    /* RX checksum enable */
        }
    
    #ifdef ETRANS
        /*If TX loading is heavy, the driver can try to anbel "early transmit".
        The programmer can tune the "Early Transmit Threshold" to get 
        the optimization. (DM9KS_ETXCSR.[1-0])
        
        Side Effect: It will happen "Transmit under-run". When TX under-run
        always happens, the programmer can increase the value of "Early 
        Transmit Threshold". */
        iow(db, DM9KS_ETXCSR, 0x83);
    #endif
     
        /* Set address filter table */
        dm9000_hash_table(dev);
    
        /* Activate DM9000/DM9010 */
        iow(db, DM9KS_IMR, DM9KS_REGFF); /* Enable TX/RX interrupt mask */
        iow(db, DM9KS_RXCR, DM9KS_REG05 | 1);    /* RX enable */
        
        /* Init Driver variable */
        db->tx_pkt_cnt         = 0;
            
        netif_carrier_on(dev);
    
    }
    
    /*
      Hardware start transmission.
      Send a packet to media from the upper layer.
    */
    static int dmfe_start_xmit(struct sk_buff *skb, struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        char * data_ptr;
        int i, tmplen;
        u16 MDWAH, MDWAL;
        
        #ifdef TDBUG /* check TX FIFO pointer */
                u16 MDWAH1, MDWAL1;
                u16 tx_ptr;
        #endif
        
        DMFE_DBUG(0, "dmfe_start_xmit", 0);
        if (db->chip_revision != 0x1A)
        {    
            if(db->Speed == 10)
                {if (db->tx_pkt_cnt >= 1) return 1;}
            else
                {if (db->tx_pkt_cnt >= 2) return 1;}
        }else
            if (db->tx_pkt_cnt >= 2) return 1;
        
        /* packet counting */
        db->tx_pkt_cnt++;
    
        db->stats.tx_packets++;
        db->stats.tx_bytes+=skb->len;
        if (db->chip_revision != 0x1A)
        {
            if (db->Speed == 10)
                {if (db->tx_pkt_cnt >= 1) netif_stop_queue(dev);}
            else
                {if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);}
        }else
            if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);        
    
        /* Disable all interrupt */
        iow(db, DM9KS_IMR, DM9KS_DISINTR);
    
        MDWAH = ior(db,DM9KS_MDWAH);
        MDWAL = ior(db,DM9KS_MDWAL);
    
        /* Set TX length to reg. 0xfc & 0xfd */
        iow(db, DM9KS_TXPLL, (skb->len & 0xff));
        iow(db, DM9KS_TXPLH, (skb->len >> 8) & 0xff);
    
        /* Move data to TX SRAM */
        data_ptr = (char *)skb->data;
        
        outb(DM9KS_MWCMD, db->io_addr); // Write data into SRAM trigger
        switch(db->io_mode)
        {
            case DM9KS_BYTE_MODE:
                for (i = 0; i < skb->len; i++)
                    outb((data_ptr[i] & 0xff), db->io_data);
                break;
            case DM9KS_WORD_MODE:
                tmplen = (skb->len + 1) / 2;
                for (i = 0; i < tmplen; i++)
            outw(((u16 *)data_ptr)[i], db->io_data);
          break;
        case DM9KS_DWORD_MODE:
          tmplen = (skb->len + 3) / 4;            
                for (i = 0; i< tmplen; i++)
                    outl(((u32 *)data_ptr)[i], db->io_data);
                break;
        }
        
    #ifndef ETRANS
        /* Issue TX polling command */
        iow(db, DM9KS_TCR, 0x1); /* Cleared after TX complete*/
    #endif
    
        #ifdef TDBUG /* check TX FIFO pointer */
                MDWAH1 = ior(db,DM9KS_MDWAH);
                MDWAL1 = ior(db,DM9KS_MDWAL);
                tx_ptr = (MDWAH<<8)|MDWAL;
                switch (db->io_mode)
                {
                    case DM9KS_BYTE_MODE:
                        tx_ptr += skb->len;
                        break;
                    case DM9KS_WORD_MODE:
                        tx_ptr += ((skb->len + 1) / 2)*2;
                        break;
                    case DM9KS_DWORD_MODE:
                        tx_ptr += ((skb->len+3)/4)*4;
                        break;
                }
                if (tx_ptr > 0x0bff)
                        tx_ptr -= 0x0c00;
                if (tx_ptr != ((MDWAH1<<8)|MDWAL1))
                        printk("[dm9ks:TX FIFO ERROR
    ");
        #endif
        /* Saved the time stamp */
        dev->trans_start = jiffies;
        db->cont_rx_pkt_cnt =0;
    
        /* Free this SKB */
        dev_kfree_skb(skb);
    
        /* Re-enable interrupt */
        iow(db, DM9KS_IMR, DM9KS_REGFF);
    
        return 0;
    }
    
    /*
      Stop the interface.
      The interface is stopped when it is brought.
    */
    static int dmfe_stop(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        DMFE_DBUG(0, "dmfe_stop", 0);
    
        /* deleted timer */
        del_timer(&db->timer);
    
        netif_stop_queue(dev); 
    
        /* free interrupt */
        free_irq(dev->irq, dev);
    
        /* RESET devie */
        phy_write(db, 0x00, 0x8000);    /* PHY RESET */
        //iow(db, DM9KS_GPR, 0x01);     /* Power-Down PHY */
        iow(db, DM9KS_IMR, DM9KS_DISINTR);    /* Disable all interrupt */
        iow(db, DM9KS_RXCR, 0x00);    /* Disable RX */
    
        /* Dump Statistic counter */
    #if FALSE
        printk("
    RX FIFO OVERFLOW %lx
    ", db->stats.rx_fifo_errors);
        printk("RX CRC %lx
    ", db->stats.rx_crc_errors);
        printk("RX LEN Err %lx
    ", db->stats.rx_length_errors);
        printk("RESET %x
    ", db->reset_counter);
        printk("RESET: TX Timeout %x
    ", db->reset_tx_timeout);
        printk("g_TX_nsr %x
    ", g_TX_nsr);
    #endif
    
        return 0;
    }
    
    static void dmfe_tx_done(unsigned long unused)
    {
        struct net_device *dev = dmfe_dev;
        board_info_t *db = netdev_priv(dev);
        int  nsr;
    
        DMFE_DBUG(0, "dmfe_tx_done()", 0);
        
        nsr = ior(db, DM9KS_NSR);
        if (nsr & 0x0c)
        {
            if(nsr & 0x04) db->tx_pkt_cnt--;
            if(nsr & 0x08) db->tx_pkt_cnt--;
            if(db->tx_pkt_cnt < 0)
            {
                printk(KERN_DEBUG "DM9KS:tx_pkt_cnt ERROR!!
    ");
                while(ior(db,DM9KS_TCR) & 0x1){}
                db->tx_pkt_cnt = 0;
            }
                
        }else{
            while(ior(db,DM9KS_TCR) & 0x1){}
            db->tx_pkt_cnt = 0;
        }
            
        netif_wake_queue(dev);
        
        return;
    }
    
    /*
      DM9000 insterrupt handler
      receive the packet to upper layer, free the transmitted packet
    */
    #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
    static void dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)
    #else
        #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19)
        static irqreturn_t dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)
        #else
        static irqreturn_t dmfe_interrupt(int irq, void *dev_id) /* for kernel 2.6.20*/
        #endif
    #endif
    {
        struct net_device *dev = dev_id;
        board_info_t *db;
        int int_status,i;
        u8 reg_save;
    
        DMFE_DBUG(0, "dmfe_interrupt()", 0);
    
        /* A real interrupt coming */
        db = netdev_priv(dev);
        spin_lock(&db->lock);
    
        /* Save previous register address */
        reg_save = inb(db->io_addr);
    
        /* Disable all interrupt */
        iow(db, DM9KS_IMR, DM9KS_DISINTR); 
    
        /* Got DM9000/DM9010 interrupt status */
        int_status = ior(db, DM9KS_ISR);        /* Got ISR */
        iow(db, DM9KS_ISR, int_status);        /* Clear ISR status */ 
    
        /* Link status change */
        if (int_status & DM9KS_LINK_INTR) 
        {
            netif_stop_queue(dev);
            for(i=0; i<500; i++) /*wait link OK, waiting time =0.5s */
            {
                phy_read(db,0x1);
                if(phy_read(db,0x1) & 0x4) /*Link OK*/
                {
                    /* wait for detected Speed */
                    for(i=0; i<200;i++)
                        udelay(1000);
                    /* set media speed */
                    if(phy_read(db,0)&0x2000) db->Speed =100;
                    else db->Speed =10;
                    break;
                }
                udelay(1000);
            }
            netif_wake_queue(dev);
            //printk("[INTR]i=%d speed=%d
    ",i, (int)(db->Speed));    
        }
        /* Received the coming packet */
        if (int_status & DM9KS_RX_INTR) 
            dmfe_packet_receive(dev);
    
        /* Trnasmit Interrupt check */
        if (int_status & DM9KS_TX_INTR)
            dmfe_tx_done(0);
        
        if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
        {
            iow(db, DM9KS_IMR, 0xa2);
        }
        else
        {
            /* Re-enable interrupt mask */ 
            iow(db, DM9KS_IMR, DM9KS_REGFF);
        }
        
        /* Restore previous register address */
        outb(reg_save, db->io_addr); 
    
        spin_unlock(&db->lock); 
    #if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
        return IRQ_HANDLED;
    #endif
    }
    
    /*
      Get statistics from driver.
    */
    static struct net_device_stats * dmfe_get_stats(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        DMFE_DBUG(0, "dmfe_get_stats", 0);
        return &db->stats;
    }
    /*
     *    Process the ethtool ioctl command
     */
    static int dmfe_ethtool_ioctl(struct net_device *dev, void *useraddr)
    {
        //struct dmfe_board_info *db = dev->priv;
        struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO };
        u32 ethcmd;
    
        if (copy_from_user(&ethcmd, useraddr, sizeof(ethcmd)))
            return -EFAULT;
    
        switch (ethcmd) 
        {
            case ETHTOOL_GDRVINFO:
                strcpy(info.driver, DRV_NAME);
                strcpy(info.version, DRV_VERSION);
    
                sprintf(info.bus_info, "ISA 0x%lx %d",dev->base_addr, dev->irq);
                if (copy_to_user(useraddr, &info, sizeof(info)))
                    return -EFAULT;
                return 0;
        }
    
        return -EOPNOTSUPP;
    }
    /*
      Process the upper socket ioctl command
    */
    static int dmfe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
    {
        board_info_t *db = netdev_priv(dev);
        #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* for kernel 2.6.7 */
        struct mii_ioctl_data *data=(struct mii_ioctl_data *)&ifr->ifr_data; 
        #endif
      int rc=0;
            
        DMFE_DBUG(0, "dmfe_do_ioctl()", 0);
        
            if (!netif_running(dev))
                return -EINVAL;
    
            if (cmd == SIOCETHTOOL)
            rc = dmfe_ethtool_ioctl(dev, (void *) ifr->ifr_data);
        else {
            spin_lock_irq(&db->lock);
            #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* for kernel 2.6.7 */
                rc = generic_mii_ioctl(&db->mii, data, cmd, NULL);
            #else
                rc = generic_mii_ioctl(&db->mii, if_mii(ifr), cmd, NULL);
            #endif
            spin_unlock_irq(&db->lock);
        }
    
        return rc;
    }
    
    /* Our watchdog timed out. Called by the networking layer */
    static void dmfe_timeout(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        int i;
        
        DMFE_DBUG(0, "dmfe_TX_timeout()", 0);
        printk("TX time-out -- dmfe_timeout().
    ");
        db->reset_tx_timeout++;
        db->stats.tx_errors++;
        
    #if FALSE
        printk("TX packet count = %d
    ", db->tx_pkt_cnt);    
        printk("TX timeout = %d
    ", db->reset_tx_timeout);    
        printk("22H=0x%02x  23H=0x%02x
    ",ior(db,0x22),ior(db,0x23));
        printk("faH=0x%02x  fbH=0x%02x
    ",ior(db,0xfa),ior(db,0xfb));
    #endif
    
        i=0;
    
        while((i++<100)&&(ior(db,DM9KS_TCR) & 0x01))
        {
            udelay(30);
        }
            
        if(i<100)
        {
                db->tx_pkt_cnt = 0;
                netif_wake_queue(dev);
        }
        else
        {
                dmfe_reset(dev);
        }
    
    }
    
    static void dmfe_reset(struct net_device * dev)
    {
        board_info_t *db = netdev_priv(dev);
        u8 reg_save;
        int i;
        /* Save previous register address */
        reg_save = inb(db->io_addr);
    
        netif_stop_queue(dev); 
        db->reset_counter++;
        dmfe_init_dm9000(dev);
        
        db->Speed =10;
        for(i=0; i<1000; i++) /*wait link OK, waiting time=1 second */
        {
            if(phy_read(db,0x1) & 0x4) /*Link OK*/
            {
                if(phy_read(db,0)&0x2000) db->Speed =100;
                else db->Speed =10;
                break;
            }
            udelay(1000);
        }
        
        netif_wake_queue(dev);
        
        /* Restore previous register address */
        outb(reg_save, db->io_addr);
    
    }
    /*
      A periodic timer routine
    */
    static void dmfe_timer(unsigned long data)
    {
        struct net_device * dev = (struct net_device *)data;
        board_info_t *db = netdev_priv(dev);
        DMFE_DBUG(0, "dmfe_timer()", 0);
        
        if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
        {
            db->cont_rx_pkt_cnt=0;
            iow(db, DM9KS_IMR, DM9KS_REGFF);
        }
        /* Set timer again */
        db->timer.expires = DMFE_TIMER_WUT;
        add_timer(&db->timer);
        
        return;
    }
    
    
    /*
      Received a packet and pass to upper layer
    */
    static void dmfe_packet_receive(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        struct sk_buff *skb;
        u8 rxbyte;
        u16 i, GoodPacket, tmplen = 0, MDRAH, MDRAL;
        u32 tmpdata;
    
        rx_t rx;
    
        u16 * ptr = (u16*)&rx;
        u8* rdptr;
    
        DMFE_DBUG(0, "dmfe_packet_receive()", 0);
    
        db->cont_rx_pkt_cnt=0;
        
        do {
            /*store the value of Memory Data Read address register*/
            MDRAH=ior(db, DM9KS_MDRAH);
            MDRAL=ior(db, DM9KS_MDRAL);
            
            ior(db, DM9KS_MRCMDX);        /* Dummy read */
            rxbyte = inb(db->io_data);    /* Got most updated data */
    
    #ifdef CHECKSUM    
            if (rxbyte&0x2)            /* check RX byte */
            {    
          printk("dm9ks: abnormal!
    ");
                dmfe_reset(dev); 
                break;    
        }else { 
          if (!(rxbyte&0x1))
                    break;    
        }        
    #else
            if (rxbyte==0)
                break;
            
            if (rxbyte>1)
            {    
          printk("dm9ks: Rxbyte error!
    ");
              dmfe_reset(dev);
          break;    
        }
    #endif
    
            /* A packet ready now  & Get status/length */
            GoodPacket = TRUE;
            outb(DM9KS_MRCMD, db->io_addr);
    
            /* Read packet status & length */
            switch (db->io_mode) 
                {
                  case DM9KS_BYTE_MODE: 
                         *ptr = inb(db->io_data) + 
                                   (inb(db->io_data) << 8);
                        *(ptr+1) = inb(db->io_data) + 
                            (inb(db->io_data) << 8);
                        break;
                  case DM9KS_WORD_MODE:
                        *ptr = inw(db->io_data);
                        *(ptr+1)    = inw(db->io_data);
                        break;
                  case DM9KS_DWORD_MODE:
                        tmpdata  = inl(db->io_data);
                        *ptr = tmpdata;
                        *(ptr+1)    = tmpdata >> 16;
                        break;
                  default:
                        break;
                }
    
            /* Packet status check */
            if (rx.desc.status & 0xbf)
            {
                GoodPacket = FALSE;
                if (rx.desc.status & 0x01) 
                {
                    db->stats.rx_fifo_errors++;
                    printk(KERN_INFO"<RX FIFO error>
    ");
                }
                if (rx.desc.status & 0x02) 
                {
                    db->stats.rx_crc_errors++;
                    printk(KERN_INFO"<RX CRC error>
    ");
                }
                if (rx.desc.status & 0x80) 
                {
                    db->stats.rx_length_errors++;
                    printk(KERN_INFO"<RX Length error>
    ");
                }
                if (rx.desc.status & 0x08)
                    printk(KERN_INFO"<Physical Layer error>
    ");
            }
    
            if (!GoodPacket)
            {
                // drop this packet!!!
                switch (db->io_mode)
                {
                    case DM9KS_BYTE_MODE:
                         for (i=0; i<rx.desc.length; i++)
                            inb(db->io_data);
                        break;
                    case DM9KS_WORD_MODE:
                        tmplen = (rx.desc.length + 1) / 2;
                        for (i = 0; i < tmplen; i++)
                            inw(db->io_data);
                        break;
                    case DM9KS_DWORD_MODE:
                        tmplen = (rx.desc.length + 3) / 4;
                        for (i = 0; i < tmplen; i++)
                            inl(db->io_data);
                        break;
                }
                continue;/*next the packet*/
            }
            
            skb = dev_alloc_skb(rx.desc.length+4);
            if (skb == NULL )
            {    
                printk(KERN_INFO "%s: Memory squeeze.
    ", dev->name);
                /*re-load the value into Memory data read address register*/
                iow(db,DM9KS_MDRAH,MDRAH);
                iow(db,DM9KS_MDRAL,MDRAL);
                return;
            }
            else
            {
                /* Move data from DM9000 */
                skb->dev = dev;
                skb_reserve(skb, 2);
                rdptr = (u8*)skb_put(skb, rx.desc.length - 4);
                
                /* Read received packet from RX SARM */
                switch (db->io_mode)
                {
                    case DM9KS_BYTE_MODE:
                         for (i=0; i<rx.desc.length; i++)
                            rdptr[i]=inb(db->io_data);
                        break;
                    case DM9KS_WORD_MODE:
                        tmplen = (rx.desc.length + 1) / 2;
                        for (i = 0; i < tmplen; i++)
                            ((u16 *)rdptr)[i] = inw(db->io_data);
                        break;
                    case DM9KS_DWORD_MODE:
                        tmplen = (rx.desc.length + 3) / 4;
                        for (i = 0; i < tmplen; i++)
                            ((u32 *)rdptr)[i] = inl(db->io_data);
                        break;
                }
            
                /* Pass to upper layer */
                skb->protocol = eth_type_trans(skb,dev);
    
    #ifdef CHECKSUM
            if((rxbyte&0xe0)==0)    /* receive packet no checksum fail */
                    skb->ip_summed = CHECKSUM_UNNECESSARY;
    #endif
            
                netif_rx(skb);
                dev->last_rx=jiffies;
                db->stats.rx_packets++;
                db->stats.rx_bytes += rx.desc.length;
                db->cont_rx_pkt_cnt++;
    #ifdef RDBG /* check RX FIFO pointer */
                u16 MDRAH1, MDRAL1;
                u16 tmp_ptr;
                MDRAH1 = ior(db,DM9KS_MDRAH);
                MDRAL1 = ior(db,DM9KS_MDRAL);
                tmp_ptr = (MDRAH<<8)|MDRAL;
                switch (db->io_mode)
                {
                    case DM9KS_BYTE_MODE:
                        tmp_ptr += rx.desc.length+4;
                        break;
                    case DM9KS_WORD_MODE:
                        tmp_ptr += ((rx.desc.length+1)/2)*2+4;
                        break;
                    case DM9KS_DWORD_MODE:
                        tmp_ptr += ((rx.desc.length+3)/4)*4+4;
                        break;
                }
                if (tmp_ptr >=0x4000)
                    tmp_ptr = (tmp_ptr - 0x4000) + 0xc00;
                if (tmp_ptr != ((MDRAH1<<8)|MDRAL1))
                    printk("[dm9ks:RX FIFO ERROR
    ");
    #endif
                    
                if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
                {
                    dmfe_tx_done(0);
                    break;
                }
            }
                
        }while((rxbyte & 0x01) == DM9KS_PKT_RDY);
        DMFE_DBUG(0, "[END]dmfe_packet_receive()", 0);
        
    }
    
    /*
      Read a word data from SROM
    */
    static u16 read_srom_word(board_info_t *db, int offset)
    {
        iow(db, DM9KS_EPAR, offset);
        iow(db, DM9KS_EPCR, 0x4);
        while(ior(db, DM9KS_EPCR)&0x1);    /* Wait read complete */
        iow(db, DM9KS_EPCR, 0x0);
        return (ior(db, DM9KS_EPDRL) + (ior(db, DM9KS_EPDRH) << 8) );
    }
    
    #if 0
    /*
      Set DM9000/DM9010 multicast address
    */
    static void dm9000_hash_table(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        struct dev_mc_list *mcptr = dev->mc_list;
        int mc_cnt = dev->mc_count;
        u32 hash_val;
        u16 i, oft, hash_table[4];
    
        DMFE_DBUG(0, "dm9000_hash_table()", 0);
    
        /* enable promiscuous mode */
        if (dev->flags & IFF_PROMISC){
            //printk(KERN_INFO "DM9KS:enable promiscuous mode
    ");
            iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)|(1<<1));
            return;
        }else{
            //printk(KERN_INFO "DM9KS:disable promiscuous mode
    ");
            iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)&(~(1<<1)));
        }
            
        /* Receive all multicast packets */
        if (dev->flags & IFF_ALLMULTI){
            //printk(KERN_INFO "DM9KS:Pass all multicast
    ");
            iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)|(1<<3));
        }else{
            //printk(KERN_INFO "DM9KS:Disable pass all multicast
    ");
            iow(db, DM9KS_RXCR, ior(db,DM9KS_RXCR)&(~(1<<3)));
        }
        
        /* Set Node address */
        for (i = 0, oft = 0x10; i < 6; i++, oft++)
            iow(db, oft, dev->dev_addr[i]);
    
        /* Clear Hash Table */
        for (i = 0; i < 4; i++)
            hash_table[i] = 0x0;
    
        /* broadcast address */
        hash_table[3] = 0x8000;
    
        /* the multicast address in Hash Table : 64 bits */
        for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
            hash_val = cal_CRC((char *)mcptr->dmi_addr, 6, 0) & 0x3f; 
            hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
        }
    
        /* Write the hash table to MAC MD table */
        for (i = 0, oft = 0x16; i < 4; i++) {
            iow(db, oft++, hash_table[i] & 0xff);
            iow(db, oft++, (hash_table[i] >> 8) & 0xff);
        }
    }
    #else
        
    /*
     *  Set DM9000 multicast address
     */
    static void
    dm9000_hash_table_unlocked(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        struct netdev_hw_addr *ha;
        int i, oft;
        u32 hash_val;
        u16 hash_table[4];
        u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
    
        //dm9000_dbg(db, 1, "entering %s
    ", __func__);
    
        for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
            iow(db, oft, dev->dev_addr[i]);
    
        /* Clear Hash Table */
        for (i = 0; i < 4; i++)
            hash_table[i] = 0x0;
    
        /* broadcast address */
        hash_table[3] = 0x8000;
    
        if (dev->flags & IFF_PROMISC)
            rcr |= RCR_PRMSC;
    
        if (dev->flags & IFF_ALLMULTI)
            rcr |= RCR_ALL;
    
        /* the multicast address in Hash Table : 64 bits */
        netdev_for_each_mc_addr(ha, dev) {
            hash_val = ether_crc_le(6, ha->addr) & 0x3f;
            hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
        }
    
        /* Write the hash table to MAC MD table */
        for (i = 0, oft = DM9000_MAR; i < 4; i++) {
            iow(db, oft++, hash_table[i]);
            iow(db, oft++, hash_table[i] >> 8);
        }
    
        iow(db, DM9000_RCR, rcr);
    }
    
    static void
    dm9000_hash_table(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        unsigned long flags;
    
        spin_lock_irqsave(&db->lock, flags);
        dm9000_hash_table_unlocked(dev);
        spin_unlock_irqrestore(&db->lock, flags);
    }
    
    #endif
    
    /*
      Calculate the CRC valude of the Rx packet
      flag = 1 : return the reverse CRC (for the received packet CRC)
             0 : return the normal CRC (for Hash Table index)
    */
    static unsigned long cal_CRC(unsigned char * Data, unsigned int Len, u8 flag)
    {    
        u32 crc = ether_crc_le(Len, Data);
    
        if (flag) 
            return ~crc;
            
        return crc;     
    }
    
    static int mdio_read(struct net_device *dev, int phy_id, int location)
    {
        board_info_t *db = netdev_priv(dev);
        return phy_read(db, location);
    }
    
    static void mdio_write(struct net_device *dev, int phy_id, int location, int val)
    {
        board_info_t *db = netdev_priv(dev);
        phy_write(db, location, val);
    }
    
    /*
       Read a byte from I/O port
    */
    u8 ior(board_info_t *db, int reg)
    {
        outb(reg, db->io_addr);
        return inb(db->io_data);
    }
    
    /*
       Write a byte to I/O port
    */
    void iow(board_info_t *db, int reg, u8 value)
    {
        outb(reg, db->io_addr);
        outb(value, db->io_data);
    }
    
    /*
       Read a word from phyxcer
    */
    static u16 phy_read(board_info_t *db, int reg)
    {
        /* Fill the phyxcer register into REG_0C */
        iow(db, DM9KS_EPAR, DM9KS_PHY | reg);
    
        iow(db, DM9KS_EPCR, 0xc);     /* Issue phyxcer read command */
        while(ior(db, DM9KS_EPCR)&0x1);    /* Wait read complete */
        iow(db, DM9KS_EPCR, 0x0);     /* Clear phyxcer read command */
    
        /* The read data keeps on REG_0D & REG_0E */
        return ( ior(db, DM9KS_EPDRH) << 8 ) | ior(db, DM9KS_EPDRL);
        
    }
    
    /*
       Write a word to phyxcer
    */
    static void phy_write(board_info_t *db, int reg, u16 value)
    {
        /* Fill the phyxcer register into REG_0C */
        iow(db, DM9KS_EPAR, DM9KS_PHY | reg);
    
        /* Fill the written data into REG_0D & REG_0E */
        iow(db, DM9KS_EPDRL, (value & 0xff));
        iow(db, DM9KS_EPDRH, ( (value >> 8) & 0xff));
    
        iow(db, DM9KS_EPCR, 0xa);    /* Issue phyxcer write command */
        while(ior(db, DM9KS_EPCR)&0x1);    /* Wait read complete */
        iow(db, DM9KS_EPCR, 0x0);    /* Clear phyxcer write command */
    }
    //====dmfe_ethtool_ops member functions====
    static void dmfe_get_drvinfo(struct net_device *dev,
                       struct ethtool_drvinfo *info)
    {
        //board_info_t *db = netdev_priv(dev);
        strcpy(info->driver, DRV_NAME);
        strcpy(info->version, DRV_VERSION);
        sprintf(info->bus_info, "ISA 0x%lx irq=%d",dev->base_addr, dev->irq);
    }
    static int dmfe_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
    {
        board_info_t *db = netdev_priv(dev);
        spin_lock_irq(&db->lock);
        mii_ethtool_gset(&db->mii, cmd);
        spin_unlock_irq(&db->lock);
        return 0;
    }
    static int dmfe_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
    {
        board_info_t *db = netdev_priv(dev);
        int rc;
    
        spin_lock_irq(&db->lock);
        rc = mii_ethtool_sset(&db->mii, cmd);
        spin_unlock_irq(&db->lock);
        return rc;
    }
    /*
    * Check the link state
    */
    static u32 dmfe_get_link(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        return mii_link_ok(&db->mii);
    }
    
    /*
    * Reset Auto-negitiation
    */
    static int dmfe_nway_reset(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        return mii_nway_restart(&db->mii);
    }
    /*
    * Get RX checksum offload state
    */
    static uint32_t dmfe_get_rx_csum(struct net_device *dev)
    {
        board_info_t *db = netdev_priv(dev);
        return db->rx_csum;
    }
    /*
    * Get TX checksum offload state
    */
    static uint32_t dmfe_get_tx_csum(struct net_device *dev)
    {
        return (dev->features & NETIF_F_HW_CSUM) != 0;
    }
    /* 
    * Enable/Disable RX checksum offload
    */
    static int dmfe_set_rx_csum(struct net_device *dev, uint32_t data)
    {
    #ifdef CHECKSUM
        board_info_t *db = netdev_priv(dev);
        db->rx_csum = data;
    
        if(netif_running(dev)) {
            dmfe_stop(dev);
            dmfe_open(dev);
        } else
            dmfe_init_dm9000(dev);
    #else
        printk(KERN_ERR "DM9:Don't support checksum
    ");
    #endif
        return 0;
    }
    /* 
    * Enable/Disable TX checksum offload
    */
    static int dmfe_set_tx_csum(struct net_device *dev, uint32_t data)
    {
    #ifdef CHECKSUM
        if (data)
            dev->features |= NETIF_F_HW_CSUM;
        else
            dev->features &= ~NETIF_F_HW_CSUM;
    #else
        printk(KERN_ERR "DM9:Don't support checksum
    ");
    #endif
    
        return 0;
    }
    //=========================================
    #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,28)  /* for kernel 2.4.28 */
    static struct ethtool_ops dmfe_ethtool_ops = {
        .get_drvinfo        = dmfe_get_drvinfo,
        .get_settings        = dmfe_get_settings,
        .set_settings        = dmfe_set_settings,
        .get_link            = dmfe_get_link,
        .nway_reset        = dmfe_nway_reset,
        //.get_rx_csum        = dmfe_get_rx_csum,
        //.set_rx_csum        = dmfe_set_rx_csum,
        //.get_tx_csum        = dmfe_get_tx_csum,
        //.set_tx_csum        = dmfe_set_tx_csum,
    };
    #endif
    
    
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("Davicom DM9000/DM9010 ISA/uP Fast Ethernet Driver");
    #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 
    MODULE_PARM(mode, "i");
    MODULE_PARM(irq, "i");
    MODULE_PARM(iobase, "i");
    #else
    module_param(mode, int, 0);
    module_param(irq, int, 0);
    module_param(iobase, int, 0);
    #endif           
    MODULE_PARM_DESC(mode,"Media Speed, 0:10MHD, 1:10MFD, 4:100MHD, 5:100MFD");
    MODULE_PARM_DESC(irq,"EtherLink IRQ number");
    MODULE_PARM_DESC(iobase, "EtherLink I/O base address");
    
    /* Description: 
       when user used insmod to add module, system invoked init_module()
       to initilize and register.
    */
    int __init dm9000c_init(void)
    {
        volatile unsigned long *BWSCON;
        volatile unsigned long *BANKCON4;
        
        iobase = (int)ioremap(0x20000000, 4096);
        irq    = IRQ_EINT7;
    
        /* 设置硬件相关 */
        BWSCON   = ioremap(0x48000000, 4);
        BANKCON4 = ioremap(0x48000014, 4);
    
        /* ST4[19]    :0   = 未使用UB/LB
         * WS4[18]    : 0  = WAIT禁止
         * DW4[17:16] : 01 = 16位
         */
        *BWSCON &= ~(0xf<<16);
        *BWSCON |=  (1<<16);
    
        /*
         * Tacs[14:13]: 发出片选信号之前,多长时间内要先发出地址信号
         *              DM9000C的片选信号和CMD信号可以同时发出,
         *              所以它设为0
         * Tcos[12:11]: 发出片选信号之后,多长时间才能发出读信号nOE
         *              DM9000C的T1>=0ns, 
         *              所以它设为0
         * Tacc[10:8] : 读写信号的脉冲长度, 
         *              DM9000C的T2>=10ns, 
         *              所以它设为1, 表示2个hclk周期,hclk=100MHz,就是20ns
         * Tcoh[7:6]  : 当读信号nOE变为高电平后,片选信号还要维持多长时间
         *              DM9000C进行写操作时, nWE变为高电平之后, 数据线上的数据还要维持最少3ns
         *              DM9000C进行读操作时, nOE变为高电平之后, 数据线上的数据在6ns之内会消失
         *              我们取一个宽松值: 让片选信号在nOE放为高电平后,再维持10ns, 
         *              所以设为01
         * Tcah[5:4]  : 当片选信号变为高电平后, 地址信号还要维持多长时间
         *              DM9000C的片选信号和CMD信号可以同时出现,同时消失
         *              所以设为0
         * PMC[1:0]   : 00-正常模式
         *
         */
        *BANKCON4 = (7<<8)|(1<<6);
    
        iounmap(BWSCON);
        iounmap(BANKCON4);
        
        switch(mode) {
            case DM9KS_10MHD:
            case DM9KS_100MHD:
            case DM9KS_10MFD:
            case DM9KS_100MFD:
                media_mode = mode;
                break;
            default:
                media_mode = DM9KS_AUTO;
        }
        dmfe_dev = dmfe_probe();
        if(IS_ERR(dmfe_dev))
            return PTR_ERR(dmfe_dev);
        return 0;
    }
    /* Description: 
       when user used rmmod to delete module, system invoked clean_module()
       to  un-register DEVICE.
    */
    void __exit dm9000c_exit(void)
    {
        struct net_device *dev = dmfe_dev;
        DMFE_DBUG(0, "clean_module()", 0);
    
        unregister_netdev(dmfe_dev);
        release_region(dev->base_addr, 2);
    #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
        kfree(dev);
    #else
        free_netdev(dev);
        iounmap((void *)iobase);
    #endif
        
        DMFE_DBUG(0, "clean_module() exit", 0);
    }
    
    module_init(dm9000c_init);
    module_exit(dm9000c_exit);
    dm9000c_drv.c
  • 相关阅读:
    TinyMail研究—Camellite的插件系统
    Dual Tone Multifrequency
    Linux PPP 数据收发流程
    这个五一怎么过?
    Linux下的磁盘加密方法
    udev的实现原理
    c语言中程序的循环控制,for语句。
    创建一个函数,将和有n个元素的数组中的key相等的所有元素的下标存储在另一数组中,并返回和key元素相同的元素的个数。
    c语言中数组元素的哨兵查找法
    c语言中数组,一般数组
  • 原文地址:https://www.cnblogs.com/053179hu/p/14055921.html
Copyright © 2011-2022 走看看