1122. Hamiltonian Cycle (25)
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2< N <= 200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format "Vertex1 Vertex2", where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V1 V2 ... Vn
where n is the number of vertices in the list, and Vi's are the vertices on a path.
Output Specification:
For each query, print in a line "YES" if the path does form a Hamiltonian cycle, or "NO" if not.
Sample Input:6 10 6 2 3 4 1 5 2 5 3 1 4 1 1 6 6 3 1 2 4 5 6 7 5 1 4 3 6 2 5 6 5 1 4 3 6 2 9 6 2 1 6 3 4 5 2 6 4 1 2 5 1 7 6 1 3 4 5 2 6 7 6 1 2 5 4 3 1Sample Output:
YES NO NO NO YES NO
思路
图中从一个点出发的一条路径能够走过所有的点并回到出发点,除起始点外所有其他点只能访问一次,这种情况产生的回路叫哈密尔顿回路。
所以验证输入的路径是不是哈密尔顿回路,必须满足以下条件:
1.输入的节点个数必须等于 总结点数 + 1
2.不能有重复出现的节点(只能走一次,起点除外)
3.起点终点必须相同。
4.两个节点之间必须直接相通(即被一条直线直接相连)
代码
#include<iostream> #include<vector> #include<set> using namespace std; vector<vector<int>> graph(201,vector<int>(201,-1)); int main() { int N,M; while(cin >> N >> M ) { for(int i = 1;i <= M;i++) { int a,b; cin >> a >> b; graph[a][b] = graph[b][a] = 1; } int K; cin >> K; for(int i = 0;i < K;i++) { int n; set<int> visits; cin >> n; vector<int> nodes(n + 1); for(int j = 1;j <= n;j++) { cin >> nodes[j]; visits.insert(nodes[j]); } if(n != N + 1 || nodes[1] != nodes[n] || visits.size() != N) { cout << "NO" << endl; continue; } bool isha = true; for(int j = 2;j <= n;j++) { if(graph[nodes[j]][nodes[j - 1]] != 1) { isha = false; break; } } if(isha) cout << "YES" << endl; else cout << "NO" << endl; } } }