zoukankan      html  css  js  c++  java
  • SPOJ31428 FIBONOMIAL(斐波那契数列)

    神鱼推题,必是好题。

    前几天刚做过[BJOI2019]勘破神机,于是就会这题了。(BJ人民强啊……%鱼)

    首先要求是

    $$sumlimits_{i=0}^nx^if_i$$

    应该很明显能想到把 $f_i$ 写成通项公式。

    $$f_i=dfrac{1}{sqrt{5}}((dfrac{1+sqrt{5}}{2})^i-(dfrac{1-sqrt{5}}{2})^i)$$

    那么带进去:

    $$sumlimits_{i=0}^nx^idfrac{1}{sqrt{5}}((dfrac{1+sqrt{5}}{2})^i-(dfrac{1-sqrt{5}}{2})^i)$$

    $$dfrac{1}{sqrt{5}}sumlimits_{i=0}^nx^i((dfrac{1+sqrt{5}}{2})^i-(dfrac{1-sqrt{5}}{2})^i)$$

    $$dfrac{1}{sqrt{5}}(sumlimits_{i=0}^nx^i(dfrac{1+sqrt{5}}{2})^i)-sumlimits_{i=0}^nx^i(dfrac{1-sqrt{5}}{2})^i))$$

    $$dfrac{1}{sqrt{5}}(sumlimits_{i=0}^n(dfrac{1+sqrt{5}}{2} imes x)^i-sumlimits_{i=0}^n(dfrac{1-sqrt{5}}{2} imes x)^i)$$

    扩个系,变成等比数列求和,做完了。

    (貌似 $color{black}{I}color{red}{tst}$ 大爷用的矩阵快速幂直接切掉了?还是人家神啊……)

    复杂度 $O(Tlog n)$。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int mod=1000000007,inv2=500000004,inv5=400000003;
    #define FOR(i,a,b) for(int i=(a);i<=(b);i++)
    #define ROF(i,a,b) for(int i=(a);i>=(b);i--)
    #define MEM(x,v) memset(x,v,sizeof(x))
    inline ll read(){
        char ch=getchar();ll x=0,f=0;
        while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
        while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
        return f?-x:x;
    }
    int t,x;
    ll n;
    inline int add(int x,int y){return x+y<mod?x+y:x+y-mod;}
    inline int sub(int x,int y){return x<y?x-y+mod:x-y;}
    inline int mul(int x,int y){return 1ll*x*y%mod;}
    inline int qpow(int a,int b){
        int ans=1;
        for(;b;b>>=1,a=mul(a,a)) if(b&1) ans=mul(ans,a);
        return ans;
    }
    struct comp{
        int x,y;
        comp(int xx=0,int yy=0):x(xx),y(yy){}
        comp operator+(comp c){return comp(add(x,c.x),add(y,c.y));}
        comp operator-(comp c){return comp(sub(x,c.x),sub(y,c.y));}
        comp operator*(comp c){return comp(add(mul(x,c.x),mul(5,mul(y,c.y))),add(mul(x,c.y),mul(y,c.x)));}
        comp inv(){
            int t=qpow(sub(mul(x,x),mul(5,mul(y,y))),mod-2);
            return comp(mul(x,t),sub(0,mul(y,t)));
        }
        comp operator/(comp c){return *this*c.inv();}
        bool operator==(comp c){return x==c.x && y==c.y;}
    }A(inv2,inv2),B(inv2,mod-inv2),C(0,inv5);
    inline comp qpow(comp a,ll b){
        comp ans(1,0);
        for(;b;b>>=1,a=a*a) if(b&1) ans=ans*a;
        return ans;
    }
    comp calc(comp x,ll n){
        if(x==comp(1,0)) return n+1;
        return (comp(1,0)-qpow(x,n+1))/(comp(1,0)-x);
    }
    int main(){
        t=read();
        while(t--){
            n=read();x=read()%mod;
            printf("%d
    ",(C*(calc(A*comp(x,0),n)-calc(B*comp(x,0),n))).x);
        }
    }
    View Code
  • 相关阅读:
    洛谷 P6622
    洛谷 P6619
    LOJ 3188
    CF::Gym 102174G
    eJOI2017~2019
    洛谷 P6313
    洛谷 P6305
    JSOI2020 酱油记
    洛谷 P6234
    CodeForces 1334F
  • 原文地址:https://www.cnblogs.com/1000Suns/p/11186005.html
Copyright © 2011-2022 走看看