zoukankan      html  css  js  c++  java
  • Polo the Penguin and XOR operation(位运算 思维)

    Polo the Penguin and XOR operation

     CodeForces - 288C 

    Little penguin Polo likes permutations. But most of all he likes permutations of integers from 0 to n, inclusive.

    For permutation p = p0, p1, ..., pn, Polo has defined its beauty — number .

    Expression  means applying the operation of bitwise excluding "OR" to numbers xand y. This operation exists in all modern programming languages, for example, in language C++ and Java it is represented as "^" and in Pascal — as "xor".

    Help him find among all permutations of integers from 0 to n the permutation with the maximum beauty.

    Input

    The single line contains a positive integer n (1 ≤ n ≤ 106).

    Output

    In the first line print integer m the maximum possible beauty. In the second line print any permutation of integers from 0 to n with the beauty equal to m.

    If there are several suitable permutations, you are allowed to print any of them.

    Examples

    Input
    4
    Output
    20
    0 2 1 4 3
    题意:给定一个 n (1 <= n <= 10^6),求(0 ^ p0) + (1 ^ p1) + (2 ^ p2) +…… + (n ^ pn) 的最大值,其中p0 ~ pn为 0 ~ n 中的数,且每个数只利用一次。
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<algorithm>
     6 using namespace std;
     7 const int maxn=1e6+10;
     8 int n,ans[maxn];
     9 int main()
    10 {
    11     scanf("%d",&n);
    12     memset(ans,-1,sizeof(ans));
    13     for(int i=n;i>=0;i--)
    14     {
    15         if(ans[i]!=-1)
    16             continue;
    17         int k1=log2(i)+1;//求出每个数的二进制位数 并加一位 
    18         int k2=(1<<k1)-1;//找到和二进制下全为1的数且位数相同。
    19         //就比如说你知道了二进制下位数为三且全为1的数 111 
    20         //然后你求的其实就是两个位数为三的数异或为111,而且你知道了其中的一个
    21         //例如6 二进制位110 就是在求110^谁=111 那么这个谁 就相当于111^110  
    22         
    23         ans[k2^i]=i;
    24         ans[i]=k2^i;
    25     }
    26     long long sum=0;
    27     for(int i=0;i<=n;i++)
    28     {
    29         sum+=(long long )(i^ans[i]); 
    30     }
    31     printf("%lld
    ",sum);
    32     for(int i=0;i<=n;i++)
    33     {
    34         if(i)
    35         {
    36             printf(" ");
    37         }
    38         printf("%d",ans[i]);
    39     }
    40     printf("
    ");
    41 }
  • 相关阅读:
    第二周学习小结
    第一周小结(^_^)
    VS2010和搜狗快捷键冲突
    解除SQL远程编辑表
    SQLServer2005mssqlserver服务与sqlexpress服务有什么区别
    OEA界面生成学习1 总体浏览
    WPF学习:绑定
    OutLook自动存档
    文件目录学习
    AQTime
  • 原文地址:https://www.cnblogs.com/1013star/p/10014858.html
Copyright © 2011-2022 走看看