zoukankan      html  css  js  c++  java
  • Play Game (博弈DP)

    Play Game

     HDU - 4597

    Alice and Bob are playing a game. There are two piles of cards. There are N cards in each pile, and each card has a score. They take turns to pick up the top or bottom card from either pile, and the score of the card will be added to his total score. Alice and Bob are both clever enough, and will pick up cards to get as many scores as possible. Do you know how many scores can Alice get if he picks up first?

    InputThe first line contains an integer T (T≤100), indicating the number of cases. 
    Each case contains 3 lines. The first line is the N (N≤20). The second line contains N integer a i (1≤a i≤10000). The third line contains N integer b i (1≤bi≤10000).OutputFor each case, output an integer, indicating the most score Alice can get.

    Sample Input

    2 
     
    1 
    23 
    53 
     
    3 
    10 100 20 
    2 4 3 

    Sample Output

    53 
    105 
    题意: 
       Alice和Bob玩一个游戏,有两个长度为N的正整数数字序列,每次他们两个
       只能从其中一个序列,选择两端中的一个拿走。他们都希望可以拿到尽量大
       的数字之和,并且他们都足够聪明,每次都选择最优策略。Alice先选择,问
       最终Alice拿到的数字总和是多少?
    题解:
      dp[l1][r1][l2][r2]代表面对当前两个序列分别为l1~r1 l2~r2时,先手能拿到数字总和的最大值。而dp[l1][r1][l2][r2]是由dp[l1+1][r1][l2][r2],dp[l1][r1-1][l2][r2],dp[l1][r1][l2+1][r2],dp[l1][r1][l2][r2-1]四个状态转移来的。

    这是第一个样例的dfs图

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 using namespace std;
     6 int casen;
     7 int n;
     8 int dp[25][25][25][25];
     9 int sum1[30];
    10 int sum2[30];
    11 int dfs(int l1,int r1,int l2,int r2)
    12 {
    13     if(dp[l1][r1][l2][r2]!=-1)
    14         return dp[l1][r1][l2][r2];
    15     dp[l1][r1][l2][r2]=0;
    16     int sum=sum1[r1]-sum1[l1-1]+sum2[r2]-sum2[l2-1];
    17     if(l1<=r1)
    18         dp[l1][r1][l2][r2]=max(dp[l1][r1][l2][r2],sum-dfs(l1+1,r1,l2,r2));
    19     if(l1<=r1)
    20         dp[l1][r1][l2][r2]=max(dp[l1][r1][l2][r2],sum-dfs(l1,r1-1,l2,r2));
    21     if(l2<=r2)
    22         dp[l1][r1][l2][r2]=max(dp[l1][r1][l2][r2],sum-dfs(l1,r1,l2+1,r2));
    23     if(l2<=r2)
    24         dp[l1][r1][l2][r2]=max(dp[l1][r1][l2][r2],sum-dfs(l1,r1,l2,r2-1));    
    25     return dp[l1][r1][l2][r2]; 
    26 }
    27 int main()
    28 {
    29     int x;
    30     scanf("%d",&casen);
    31     while(casen--)
    32     {
    33         memset(sum2,0,sizeof(sum2));
    34         memset(sum1,0,sizeof(sum1));
    35         memset(dp,-1,sizeof(dp));
    36         scanf("%d",&n);
    37         for(int i=1;i<=n;i++)
    38         {
    39             scanf("%d",&x);
    40             sum1[i]=sum1[i-1]+x;
    41         }
    42         for(int i=1;i<=n;i++)
    43         {
    44             scanf("%d",&x);
    45             sum2[i]=sum2[i-1]+x;
    46         }
    47         int ans=dfs(1,n,1,n);
    48         printf("%d
    ",dp[1][n][1][n]);
    49     }
    50 }
    
    
  • 相关阅读:
    Ready!Api创建使用DataSource和DataSourceLoop的循环测试用例
    Tomcat8远程访问manager,host-manager被拒绝403
    银河军工:军工股数占证金公司买入比例最高
    操盘策略:如何追涨而不套牢
    老股民公开一个非常靠谱的炒股方法
    每日一招:调仓换股三大法宝
    每日一招:最高操作境界“一买就涨”
    每日一招:黄金做单时间
    每日一招:选股其实很简单
    操盘策略:只做大概率事件
  • 原文地址:https://www.cnblogs.com/1013star/p/10332191.html
Copyright © 2011-2022 走看看