zoukankan      html  css  js  c++  java
  • A Very Easy Math Problem-2020杭电多校6

    题意

    给定 (n,x,k),求:

    [sum_{a_1=1}^{n}{sum_{a_2=1}^{n}{...sum_{a_x=1}^{n}{left( prod_{j=1}^{x}{a_j^k} ight) f(gcd(a_1,a_2,...,a_x))*gcd(a_1,a_2,...,a_x)}}} ]

    其中,

    [f(x)=egin{cases} 0 & exists k>1,x\%k^2=0\ 1 & others end{cases} ]

    (1≤t≤10^4,1≤k≤10^9,1≤x≤10^9,1≤n≤2×10^5)

    分析

    推导

    [egin{align} ans & = sum_{d=1}^{n}{d·f(d)sum_{a_1=1}^{n}{sum_{a_2=1}^{n}{...sum_{a_x=1}^{n}{left( prod_{j=1}^{x}{a_j^k} ight) ·[gcd(a_1,a_2,...,a_x)==d]}}}}\ & = sum_{d=1}^{n}{d^{kx+1}·f(d)sum_{a_1=1}^{lfloor n/d floor}{sum_{a_2=1}^{lfloor n/d floor}{...sum_{a_x=1}^{lfloor n/d floor}{left( prod_{j=1}^{x}{a_j^k} ight) ·[gcd(a_1,a_2,...,a_x)==1]}}}}\ & = sum_{d=1}^{n}{d^{kx+1}·f(d)sum_{a_1=1}^{lfloor n/d floor}{sum_{a_2=1}^{lfloor n/d floor}{...sum_{a_x=1}^{lfloor n/d floor}{left( prod_{j=1}^{x}{a_j^k} ight) ·sum_{t|a_1,t|a_2,...,t|a_x}{mu(t)}}}}}\ & = sum_{d=1}^{n}{d^{kx+1}·f(d)sum_{a_1=1}^{lfloor n/d floor}{a_1^k sum_{a_2=1}^{lfloor n/d floor}{a_2^k ...sum_{a_x=1}^{lfloor n/d floor}{a_x^k ·sum_{t|a_1,t|a_2,...,t|a_x}{mu(t)}}}}}\ & = sum_{d=1}^{n}{d^{kx+1}·f(d) left(sum_{i=1}^{lfloor n/d floor}{i^k} ight)^x sum_{t|a_1,t|a_2,...,t|a_x}{mu(t)}}\ & = sum_{d=1}^{n}{d^{kx+1}·f(d) sum_{t=1}^{lfloor n/d floor}{mu(t)} ·left(sum_{i=1}^{lfloor n/dt floor}{(it)^k} ight)^x }\ end{align} ]

    (T=dt),并改变枚举顺序

    [egin{align} ans & = sum_{T=1}^{n}{left( sum_{i=1}^{lfloor n/T floor}{i^k} ight)^x · T^{kx} sum_{d|T}{f(d)mu(frac{T}{d})d}}\ end{align} ]

    (g(T)=sum_{d|T}^{T}{f(d)mu(frac{T}{d})d}),最终结果为:

    [ans= sum_{T=1}^{n}{left( sum_{i=1}^{lfloor n/T floor}{i^k} ight)^x · T^{kx}·g(T)}\ ]

    代码实现

    其中,(g,f) 函数可以 (O(nlogn)) 预处理出,(O(n)) 预处理出 (T^{kx}·g(T)) 的前缀和,然后利用分块对每个 (n) 进行 (O(sqrt{n})) 求解,总的复杂度为:(O(nlogn+tsqrt{n}))。一开始想预处理出全部的答案,但是超时了。

    代码:

    #include <bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    const int mod=1e9+7;
    const int N=2e5+5;
    int t,k,x,n;
    int prime[N],mu[N],cnt,f[N];
    bool vis[N];
    ll g[N],sum[N],pre[N];
    void init()
    {
        memset(vis,false,sizeof(vis));
        int maxn=2e5;
        cnt=0;
        mu[1]=1;
        for(int i=2;i<=maxn;i++)
        {
            if(!vis[i])
            {
                prime[++cnt]=i;
                mu[i]=-1;
            }
            for(int j=1;j<=cnt&&i*prime[j]<=maxn;j++)
            {
                vis[i*prime[j]]=1;
                if(i%prime[j]==0)
                {
                    mu[i*prime[j]]=0;
                    break;
                }
                else
                    mu[i*prime[j]]=-mu[i];
            }
        }
        for(int i=1;i<=maxn;i++) f[i]=1;
        for(int i=2;i*i<=maxn;i++)//预处理f(k)
        {
            int t=i*i;
            for(int j=t;j<=maxn;j+=t)
                f[j]=0;
        }
        //预处理g函数
        for(int i=1;i<=maxn;i++)//枚举d
        {
            for(int j=i;j<=maxn;j+=i)//T
                g[j]=(g[j]+f[i]*mu[j/i]*i%mod+mod)%mod;
        }
    }
    ll power(ll a,ll b)
    {
        ll res=1;
        a%=mod;
        while(b)
        {
            if(b&1) res=res*a%mod;
            a=a*a%mod;
            b>>=1;
        }
        return res;
    }
    void solve()
    {
        int maxn=2e5;
        ll tmp=0;
        for(int i=1;i<=maxn;i++)
        {
            ll t=power(1LL*i,1LL*k);
            tmp=(tmp+t)%mod;
            sum[i]=power(tmp,1LL*x)%mod;
            pre[i]=(pre[i-1]+power(t,1LL*x%(mod-1))*g[i]%mod+mod)%mod;//T^(kx)*g(T)的前缀和
        }
    }
    int main()
    {
        init();
        scanf("%d%d%d",&t,&k,&x);
        solve();
        while(t--)
        {
            scanf("%d",&n);
            ll ans=0;
            for(int l=1,r;l<=n;l=r+1)
            {
                r=min(n,n/(n/l));
                ans=(ans+sum[n/l]*(pre[r]-pre[l-1])%mod+mod)%mod;
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    
    

    参考博客:https://blog.csdn.net/weixin_44282912/article/details/107844614

  • 相关阅读:
    搭建james邮件服务器
    Spring -- AOP
    【RF库Collections测试】List Should Not Contain Duplicates
    【RF库Collections测试】Keep In Dictionary
    【RF库Collections测试】Insert Into List
    【RF库Collections测试】Get Index From List
    【RF库Collections测试】Get From List
    【RF库Collections测试】Count Values In List
    【RF库Collections测试】Get Slice From List
    【RF库Collections测试】Copy Dictionary
  • 原文地址:https://www.cnblogs.com/1024-xzx/p/13455408.html
Copyright © 2011-2022 走看看