zoukankan      html  css  js  c++  java
  • codeforces 534 A. Exam

    A. Exam
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    An exam for n students will take place in a long and narrow room, so the students will sit in a line in some order. The teacher suspects that students with adjacent numbers (i and i + 1) always studied side by side and became friends and if they take an exam sitting next to each other, they will help each other for sure.

    Your task is to choose the maximum number of students and make such an arrangement of students in the room that no two students with adjacent numbers sit side by side.

    Input

    A single line contains integer n (1 ≤ n ≤ 5000) — the number of students at an exam.

    Output

    In the first line print integer k — the maximum number of students who can be seated so that no two students with adjacent numbers sit next to each other.

    In the second line print k distinct integers a1, a2, ..., ak (1 ≤ ai ≤ n), where ai is the number of the student on the i-th position. The students on adjacent positions mustn't have adjacent numbers. Formally, the following should be true: |ai - ai + 1| ≠ 1 for all i from 1 tok - 1.

    If there are several possible answers, output any of them.

    题意是有n个数(1..n),问构造一个最长的数列,使得相邻元素的差的绝对值不等于1.

    1,2,3,4特判下。

    剩下的直接先走奇数,后走偶数构造即可。

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    using namespace std;
    const int N=5E3+7;
    int a[N],n,k,tmp;
    
    int main()
    {
        cin>>n;
        memset(a,0,sizeof(a));
        if (n<=2)
        {
    
            k = 1;
            a[1] = 1;
            cout<<k<<endl;
            cout<<a[1];
            return 0;
        }
        if (n==3)
        {
            k = 2;
            a[1] = 1;
            a[2] = 3;
            cout<<k<<endl;
            cout<<a[1]<<" "<<a[2];
            return 0;
        }
        if (n==4)
        {
            k = 4;
            a[1] = 2;
            a[2] = 4;
            a[3] = 1;
            a[4] = 3;
            cout<<k<<endl;
            cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4];
            return 0;
        }
         tmp = (n+1)/2;
        for ( int i = 1 ; i <= n ; i++)
        {
    
            if (i<=tmp)
            {
                a[i] = 2*i-1;
            }
            else
            {
                a[i]=a[i-tmp]+1;
            }
        }
        cout<<n<<endl;
        for ( int i = 1 ; i <= n ; i++ )
            cout<<a[i]<<" ";
    
    
    
        return 0;
    }
  • 相关阅读:
    114.完全背包【恰好装满完全背包
    整数划分类型题目
    三目运算符
    关于 xk 的位数。
    多重背包二进制原理拆分问题
    2016.4.2 讲课笔记(动态规划)
    二叉树(2)二叉树创建的3种方法,二叉树的递归遍历,二叉树的销毁
    二叉树(1)已知某2种排序方式,创建这个二叉树并按第3种方式排序
    C++知识点总结(二)
    5款优秀的开源克隆软件
  • 原文地址:https://www.cnblogs.com/111qqz/p/4421601.html
Copyright © 2011-2022 走看看