zoukankan      html  css  js  c++  java
  • cf 567 C. Geometric Progression

    C. Geometric Progression
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and a sequence a, consisting of n integers.

    He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common ratio k.

    A subsequence of length three is a combination of three such indexes i1, i2, i3, that 1 ≤ i1 < i2 < i3 ≤ n. That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

    A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.

    Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

    Input

    The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105), showing how many numbers Polycarp's sequence has and his favorite number.

    The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — elements of the sequence.

    Output

    Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.

    Sample test(s)
    input
    5 2
    1 1 2 2 4
    output
    4
    input
    3 1
    1 1 1
    output
    1
    input
    10 3
    1 2 6 2 3 6 9 18 3 9
    output
    6
    Note

    In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

    给定一个数列,从中按照顺序挑出3个数,使这三个数构成以k为公比的等比数列.问一共有多少种方法.

    STL大法好.

    所以说大概map的一个作用就是当数组的下标太大?

    我还是太年轻了...

    做法是枚举中间的数,具体见代码注释.

    /*************************************************************************
        > File Name: code/cf/#314/CC.cpp
        > Author: 111qqz
        > Email: rkz2013@126.com 
        > Created Time: 2015年08月06日 星期四 15时00分46秒
     ************************************************************************/
    
    #include<iostream>
    #include<iomanip>
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<cstring>
    #include<string>
    #include<map>
    #include<set>
    #include<queue>
    #include<vector>
    #include<stack>
    #define y0 abc111qqz
    #define y1 hust111qqz
    #define yn hez111qqz
    #define j1 cute111qqz
    #define tm crazy111qqz
    #define lr dying111qqz
    using namespace std;
    #define REP(i, n) for (int i=0;i<int(n);++i)  
    typedef long long LL;
    typedef unsigned long long ULL;
    const int inf = 0x7fffffff;
    LL ans  = 0;
    int n,k;
    map<LL,LL>m[2];
    int main()
    {
        cin>>n>>k;
        for ( int i  = 1 ; i <= n ; i ++ )
        {
        int a;
        scanf("%d",&a);
        if (a%k==0)                //枚举中间的数
        {
            ans = ans + m[1][a/k];
            m[1][a] = m[1][a]+m[0][a/k];//记录的是以a为中间数的序列的数
                            // 因为有多个a,而且对于第i+1个a,第i个a前面的a%k一样可以对序列有贡献,所以是累加.
        }
        m[0][a]++; //记录a的个数
    //    cout<<i<<" "<<ans<<endl;
        }
        cout<<ans<<endl;
      
        return 0;
    }
  • 相关阅读:
    html5跨域通讯之postMessage的用法
    zTree插件之多选下拉菜单代码
    css3创建一个上下线性渐变色背景的div
    zTree插件之单选下拉菜单代码
    PhoneGap中navigator.notification.confirm的用法详解
    CCS3属性之text-overflow:ellipsis;的用法和注意之处
    HTML5的自定义属性data-* 的用法解析
    HSSFWorkbook转MultipartFile InputStream转MultipartFile
    @Transactional
    synchronized volatile
  • 原文地址:https://www.cnblogs.com/111qqz/p/4708098.html
Copyright © 2011-2022 走看看