zoukankan      html  css  js  c++  java
  • IO模型

    一、IO模型

    同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,先限定一下本文的上下文。
    本文讨论的背景是Linux环境下的network IO。 

    Stevens在文章中一共比较了五种IO Model:

    •     blocking IO
    •     nonblocking IO
    •     IO multiplexing
    •     signal driven IO
    •     asynchronous IO

    由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。
    再说一下IO发生时涉及的对象和步骤。
    对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:

    •  等待数据准备 (Waiting for the data to be ready)
    •  将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

    记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。

    1、blocking IO(阻塞IO)

    在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

     当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
    所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

    2、non-blocking IO(非阻塞IO)

     linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

    从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

     注意:

          在网络IO时候,非阻塞IO也会进行recvform系统调用,检查数据是否准备好,与阻塞IO不一样,”非阻塞将大的整片时间的阻塞分成N多的小的阻塞, 所以进程不断地有机会 ‘被’ CPU光顾”。即每次recvform系统调用之间,cpu的权限还在进程手中,这段时间是可以做其他事情的,

          也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。

    import time
    import socket
    sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    sk.setsockopt
    sk.bind(('127.0.0.1',6667))
    sk.listen(5)
    sk.setblocking(False)
    while True:
        try:
            print ('waiting client connection .......')
            connection,address = sk.accept()   # 进程主动轮询
            print("+++",address)
            client_messge = connection.recv(1024)
            print(str(client_messge,'utf8'))
            connection.close()
        except Exception as e:
            print (e)
            time.sleep(4)
    
    #############################client
    
    import time
    import socket
    sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    
    while True:
        sk.connect(('127.0.0.1',6667))
        print("hello")
        sk.sendall(bytes("hello","utf8"))
        time.sleep(2)
        break
    

      

    优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在同时执行)。

    缺点:任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。

    3、IO multiplexing(IO多路复用)

     IO multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

    当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
    这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)
    在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

    结论: select的优势在于可以处理多个连接,不适用于单个连接 。

    #***********************server.py
    
    import socket
    import select
    sk=socket.socket()
    sk.bind(("127.0.0.1",8800))
    sk.listen(5)
    sk.setblocking(False)
    inputs=[sk,]
    
    while True:
        r,w,e=select.select(inputs,[],[],5)
        print(len(r))
    
        for obj in r:
            if obj==sk:
                conn,add=obj.accept()
                print("conn:",conn)
                inputs.append(conn)
            else:
    
                data_byte=obj.recv(1024)
                print(str(data_byte,'utf8'))
                if not data_byte:
                    inputs.remove(obj)
                    continue
                inp=input('回答%s: >>>'%inputs.index(obj))
                obj.sendall(bytes(inp,'utf8'))
    
        print('>>',r)
    
    
    #***********************client.py
    
    import socket
    sk=socket.socket()
    sk.connect(('127.0.0.1',8802))
    
    while True:
        inp=input(">>>>")   # how much one night?
        sk.sendall(bytes(inp,"utf8"))
        data=sk.recv(1024)
        print(str(data,'utf8'))
    

      

    思考1:select监听fd变化的过程

    用户进程创建socket对象,拷贝监听的fd到内核空间,每一个fd会对应一张系统文件表,内核空间的fd响应到数据后,就会发送信号给用户进程数据已到;用户进程再发送系统调用,比如(accept)将内核空间的数据copy到用户空间,同时作为接受数据端内核空间的数据清除,这样重新监听时fd再有新的数据又可以响应到了(发送端因为基于TCP协议所以需要收到应答后才会清除)。

    思考2: 上面的示例中,开启三个客户端,分别连续向server端发送一个内容(中间server端不回应),结果会怎样,为什么?

    4、Asynchronous I/O(异步IO)

     linux下的asynchronous IO其实用得很少。先看一下它的流程:

    用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

    5、IO模型比较分析

    到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
    先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

    在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
      A synchronous I/O operation causes the requesting process to be blocked until that I/O operationcompletes;
      An asynchronous I/O operation does not cause the requesting process to be blocked; 
      两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

    各个IO Model的比较如图所示:

    经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

    6、selector模块

    复制代码
    import selectors
    import socket
    
    sel = selectors.DefaultSelector()
    
    def accept(sock, mask):
        conn, addr = sock.accept()  # Should be ready
        print('accepted', conn, 'from', addr)
        conn.setblocking(False)
        sel.register(conn, selectors.EVENT_READ, read)
    
    def read(conn, mask):
        data = conn.recv(1000)  # Should be ready
        if data:
            print('echoing', repr(data), 'to', conn)
            conn.send(data)  # Hope it won't block
        else:
            print('closing', conn)
            sel.unregister(conn)
            conn.close()
    
    sock = socket.socket()
    sock.bind(('localhost', 1234))
    sock.listen(100)
    sock.setblocking(False)
    sel.register(sock, selectors.EVENT_READ, accept)
    
    while True:
        events = sel.select()
        for key, mask in events:
            callback = key.data
            callback(key.fileobj, mask)
    复制代码
  • 相关阅读:
    linux 进程等待 wait 、 waitpid
    数理逻辑量词的引入
    Android自己定义动态布局 — 多图片上传
    Dynamics CRM 2015/2016 Web API:Unbound Custom Action 和 Bound Custom Action
    iOS 9应用开发教程之显示编辑文本标签文本框
    iOS 9应用开发教程之ios9中实现按钮的响应
    iOS 9应用开发教程之使用代码添加按钮美化按钮
    iOS 9应用开发教程之ios9的视图
    iOS 9应用开发教程之定制应用程序图标以及真机测试
    iOS 9应用开发教程之编辑界面与编写代码
  • 原文地址:https://www.cnblogs.com/1204guo/p/7270463.html
Copyright © 2011-2022 走看看