zoukankan      html  css  js  c++  java
  • spark创建DataFrame的几种方式

    package com.hollysys.spark
    
    import java.util
    
    import org.apache.spark.sql.types._
    import org.apache.spark.sql.{Row, SQLContext, SparkSession}
    
    /**
      * Created by shirukai on 2018/7/17
      * 创建DataFrame的几种方式
      */
    object CreateDataFrameTest {
      def main(args: Array[String]): Unit = {
        val spark = SparkSession
          .builder()
          .appName(this.getClass.getSimpleName).master("local")
          .getOrCreate()
    
        //第一种:通过Seq生成
        val df = spark.createDataFrame(Seq(
          ("ming", 20, 15552211521L),
          ("hong", 19, 13287994007L),
          ("zhi", 21, 15552211523L)
        )) toDF("name", "age", "phone")
    
        df.show()
    
        //第二种:通过读取Json文件生成
        val dfJson = spark.read.format("json").load("/Users/shirukai/Desktop/HollySys/Repository/sparkLearn/data/student.json")
        dfJson.show()
    
        //第三种:通过读取Csv文件生成
        val dfCsv = spark.read.format("csv").option("header", true).load("/Users/shirukai/Desktop/HollySys/Repository/sparkLearn/data/students.csv")
        dfCsv.show()
    
        //第四种:通过Json格式的RDD生成(弃用)
        val sc = spark.sparkContext
        import spark.implicits._
        val jsonRDD = sc.makeRDD(Array(
          "{"name":"ming","age":20,"phone":15552211521}",
          "{"name":"hong", "age":19,"phone":13287994007}",
          "{"name":"zhi", "age":21,"phone":15552211523}"
        ))
    
        val jsonRddDf = spark.read.json(jsonRDD)
        jsonRddDf.show()
    
        //第五种:通过Json格式的DataSet生成
        val jsonDataSet = spark.createDataset(Array(
          "{"name":"ming","age":20,"phone":15552211521}",
          "{"name":"hong", "age":19,"phone":13287994007}",
          "{"name":"zhi", "age":21,"phone":15552211523}"
        ))
        val jsonDataSetDf = spark.read.json(jsonDataSet)
    
        jsonDataSetDf.show()
    
        //第六种: 通过csv格式的DataSet生成
        val scvDataSet = spark.createDataset(Array(
          "ming,20,15552211521",
          "hong,19,13287994007",
          "zhi,21,15552211523"
        ))
        spark.read.csv(scvDataSet).toDF("name","age","phone").show()
    
        //第七种:动态创建schema
        val schema = StructType(List(
          StructField("name", StringType, true),
          StructField("age", IntegerType, true),
          StructField("phone", LongType, true)
        ))
        val dataList = new util.ArrayList[Row]()
        dataList.add(Row("ming",20,15552211521L))
        dataList.add(Row("hong",19,13287994007L))
        dataList.add(Row("zhi",21,15552211523L))
        spark.createDataFrame(dataList,schema).show()
    
        //第八种:读取数据库(mysql)
        val options = new util.HashMap[String,String]()
        options.put("url", "jdbc:mysql://localhost:3306/spark")
        options.put("driver","com.mysql.jdbc.Driver")
        options.put("user","root")
        options.put("password","hollysys")
        options.put("dbtable","user")
    
        spark.read.format("jdbc").options(options).load().show()
    
      }
    }

    转载:https://blog.csdn.net/shirukai/article/details/81085642

  • 相关阅读:
    最近碰到的一些问题
    CF #365 703D. Mishka and Interesting sum
    CF 690C3. Brain Network (hard) from Helvetic Coding Contest 2016 online mirror (teams, unrated)
    Mac Hadoop的安装与配置
    pyenv的安装和使用
    tmux简要介绍
    将本地的项目通过SVN还原到某一版本,并将SVN服务器上的项目也还原到这一版本
    Tomcat7解决中文乱码
    解决tomcat7控制台中文乱码问题
    JDK环境变量配置,实现多个版本的JDK环境变量任意切换配置(Windows7 / Windows10 )
  • 原文地址:https://www.cnblogs.com/123456www/p/12315473.html
Copyright © 2011-2022 走看看