zoukankan      html  css  js  c++  java
  • 01.TensorFlow基本操作

    运行代码:

    import tensorflow as tf
    import os
    
    os.environ["CUDA_VISIBLE_DEVICES"]="0"
    with tf.compat.v1.Session() as sess:
        a = tf.constant(2)
        b = tf.constant(3)
        print("a:%i" % sess.run(a),"b:%i" % sess.run(b))
        print("Addition with constants: %i" % sess.run(a+b))
        print("Multiplication with constant: %i" % sess.run(a*b))

    在练习的过程中出现了错误  The Session graph is empty. Add operations to the graph before calling run().

    百度之后的结果是 

      1. tensorflow核心r2.0默认情况下已启用急切执行,因此无需编写tf.compat.v1.Session()并使用.run()函数
        如果我们想使用tf.compat.v1.Session()则我们需要
        在算法开始时执行tf.compat.v1.disable_eager_execution()。现在我们可以使用tf.compat.v1.Session()和.run()函数。

      2. Tensorflow核心r2.0默认情况下已启用急切执行。因此,无需更改它,
        我们只需更改我们的代码

    需要将赋值写到 with tf.compat.v1.Session() as sess: 里面;

    import tensorflow.compat.v1 as tf
    tf.disable_v2_behavior()
    import os
    os.environ["CUDA_VISIBLE_DEVICES"]="0"
    a=tf.placeholder(tf.int16)
    b=tf.placeholder(tf.int16)
    with tf.compat.v1.Session() as sess:
    
        add=tf.add(a,b)
        mul=tf.multiply(a,b)
        print("Addition with constants: %i" % sess.run(add,feed_dict={a:2,b:3}))
        print("Multiplication with constant: %i" % sess.run(mul,feed_dict={a:2,b:3}))

    报错:module 'tensorflow' has no attribute 'placeholder'

    将 import tensorflow.compat.v1 as tf 替换 import tensorflow as tf

    import tensorflow.compat.v1 as tf
    tf.disable_v2_behavior()
    import os
    os.environ["CUDA_VISIBLE_DEVICES"]="0"
    matrix1=tf.constant([[3.,3.]])
    matrix2=tf.constant([[2.],[2.]])
    a=tf.placeholder(tf.int16)
    b=tf.placeholder(tf.int16)
    with tf.compat.v1.Session() as sess:
        product = tf.matmul(matrix1, matrix2)
        result = sess.run(product)
        print(result)
        add=tf.add(a,b)
        mul=tf.multiply(a,b)
        print("Addition with constants: %i" % sess.run(add,feed_dict={a:2,b:3}))
        print("Multiplication with constant: %i" % sess.run(mul,feed_dict={a:2,b:3}))

  • 相关阅读:
    hdoj 3599 最小费用最大流
    poj 2516 最小费用最大流
    poj 3281 最大流拆点
    poj 3436 网络最大流加打印路径
    邻接表模板
    hdu 2102 搜索
    hdoj 1533 最小费用最大流
    HDU 1231 最大连续子序列
    NYOJ 2 括号配对问题
    POJ 1163 / NYOJ 16 The Triangle(数字三角形)
  • 原文地址:https://www.cnblogs.com/1234yyf/p/14270799.html
Copyright © 2011-2022 走看看