zoukankan      html  css  js  c++  java
  • poj 1745 Divisibility(DP)

    Divisibility
    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu
     
     

    Description

    Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
    17 + 5 + -21 - 15 = -14 
    17 + 5 - -21 + 15 = 58 
    17 + 5 - -21 - 15 = 28 
    17 - 5 + -21 + 15 = 6 
    17 - 5 + -21 - 15 = -24 
    17 - 5 - -21 + 15 = 48 
    17 - 5 - -21 - 15 = 18 
    We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5. 

    You are to write a program that will determine divisibility of sequence of integers. 

    Input

    The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
    The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

    Output

    Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

    Sample Input

    4 7
    17 5 -21 15

    Sample Output

    Divisible

    AC代码:
     1 /*用dp[i][j]表示通过前i个数的运算得到的余数为j可不可能,
     2 先看求a % k,如果a > k,
     3 则a = n * k + b,(n * k + b) % k == 0 + b % k = a % k,
     4 所以当a > k时,对求余数有影响的部分是不能被整除的部分,
     5 因此对于每个数我们可以做
     6 a[i] = a[i] > 0 ? (a[i] % k) : -(a[i] % k)的预处理,
     7 然后就是在dp[i - 1][j]的情况下,推出下一状态,
     8 下一状态有两种可能,加和减,
     9 减的时候防止出现负数加上个k再取余,
    10 初始化dp[0][a[0]] = true最后只要判断dp[n - 1][0]
    11 及前n个数通过加减运算能否得到被k整除的值
    12 注意第一个数字前边不能加符号,所以要单独处理。*/
    13 #include <cstdio>
    14 #include <cstring>
    15 int const MAX = 10005;
    16 bool dp[MAX][105];
    17 int a[MAX];
    18 int main()
    19 {
    20     int n, k;
    21     while(scanf("%d %d", &n, &k) != EOF){
    22         memset(dp, false, sizeof(dp));
    23         for(int i = 0; i < n; i++){
    24             scanf("%d", &a[i]);
    25             a[i] = a[i] > 0 ? (a[i] % k) : -(a[i] % k);
    26         }
    27         dp[0][a[0]] = true;
    28         for(int i = 1; i < n; i++)
    29             for(int j = 0; j <= k; j++){
    30                 if(dp[i - 1][j]){
    31                     dp[i][(j + a[i]) % k] = true;
    32                     dp[i][(k + j - a[i]) % k] = true;
    33                 }
    34             }
    35         printf("%s
    ", dp[n - 1][0] ? "Divisible" : "Not divisible");
    36     }
    37     return 0;
    38 }
  • 相关阅读:
    Jenkins 主备master-slave模式搭建
    vbox 相关
    jenkins 常见问题汇总
    linux git patch 和patch以及git diff 命令
    Linux中的free命令
    MySQL Show命令的使用
    MySQL 加锁处理分析 转
    共享锁【S锁】 排他锁【X锁】
    MySQL分库分表环境下全局ID生成方案 转
    mysql性能的检查和调优方法
  • 原文地址:https://www.cnblogs.com/123tang/p/5754629.html
Copyright © 2011-2022 走看看