zoukankan      html  css  js  c++  java
  • POJ 3237:Tree

    Tree
    Time Limit: 5000MS        Memory Limit: 131072K
    Total Submissions: 10224        Accepted: 2651
    Description
    
    You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:
    
    CHANGE i v    Change the weight of the ith edge to v
    NEGATE a b    Negate the weight of every edge on the path from a to b
    QUERY a b    Find the maximum weight of edges on the path from a to b
    Input
    
    The input contains multiple test cases. The first line of input contains an integer t (t ≤ 20), the number of test cases. Then follow the test cases.
    
    Each test case is preceded by an empty line. The first nonempty line of its contains N (N ≤ 10,000). The next N − 1 lines each contains three integers a, b and c, describing an edge connecting nodes a and b with weight c. The edges are numbered in the order they appear in the input. Below them are the instructions, each sticking to the specification above. A lines with the word “DONE” ends the test case.
    
    Output
    
    For each “QUERY” instruction, output the result on a separate line.
    
    Sample Input
    
    1
    
    3
    1 2 1
    2 3 2
    QUERY 1 2
    CHANGE 1 3
    QUERY 1 2
    DONE
    Sample Output
    
    1
    3
    题目

      芒果君:比较裸的树剖,然而我调了一下午……总共三个操作:修改单边权、查询路径上所有路的最大值或所有路的权值取相反数。第三个最难搞,因为本来维护好的最大值会变成最小值,那再维护下最小值不就完了……思路简单的不行然而代码量太大堪比线段树练习5 QAQ 注意中间的ret是负无穷!我简直要调到死了

      1 #include<cstdio>
      2 #include<cstring>
      3 #include<algorithm>
      4 #include<map>
      5 #define maxn 100010
      6 #define inf 1<<29
      7 using namespace std;
      8 int top[maxn],deep[maxn],size[maxn],head[maxn],son[maxn],fa[maxn],dfn[maxn],tot,cnt,hl[maxn],n,q,lazy[maxn];
      9 char s[10];
     10 struct Edge{
     11     int u,v,w,ne;
     12 }e[maxn<<1];
     13 struct Tree{
     14     int mi,ma;
     15 }tree[maxn<<2];
     16 void init()
     17 {
     18     cnt=tot=0;
     19     memset(tree,0,sizeof(tree));
     20     memset(top,0,sizeof(top));
     21     memset(deep,0,sizeof(deep));
     22     memset(size,0,sizeof(size));
     23     memset(head,0,sizeof(head));
     24     memset(son,0,sizeof(son));
     25     memset(fa,0,sizeof(fa));
     26     memset(dfn,0,sizeof(dfn));
     27     memset(hl,0,sizeof(hl));
     28     memset(lazy,0,sizeof(lazy));
     29 }
     30 void add(int u,int v,int w)
     31 {
     32     e[++cnt].u=u;
     33     e[cnt].v=v;
     34     e[cnt].w=w;
     35     e[cnt].ne=hl[u];
     36     hl[u]=cnt;
     37 }
     38 void dfs1(int x)
     39 {
     40     size[x]=1;
     41     for(int i=hl[x];i;i=e[i].ne){
     42         int v=e[i].v;
     43         if(v==fa[x]) continue;
     44         deep[v]=deep[x]+1;
     45         fa[v]=x;
     46         dfs1(v);
     47         size[x]+=size[v];
     48         if(size[v]>size[son[x]]) son[x]=v;
     49     }
     50 }
     51 void dfs2(int x,int tp)
     52 {
     53     top[x]=tp;
     54     dfn[x]=++tot;
     55     if(son[x]) dfs2(son[x],tp);
     56     for(int i=hl[x];i;i=e[i].ne){
     57         int v=e[i].v;
     58         if(v==son[x]||v==fa[x]) continue;
     59         dfs2(v,v);
     60     }
     61 }
     62 void pushup(int o)
     63 {
     64     tree[o].ma=max(tree[o<<1].ma,tree[o<<1|1].ma);
     65     tree[o].mi=min(tree[o<<1].mi,tree[o<<1|1].mi);
     66 }
     67 void pushdown(int o,int l,int r)
     68 {
     69     if(l==r||!lazy[o]) return;
     70     lazy[o]=0;
     71     lazy[o<<1]^=1,lazy[o<<1|1]^=1;
     72     swap(tree[o<<1].mi,tree[o<<1].ma);
     73     tree[o<<1].mi*=-1,tree[o<<1].ma*=-1;
     74     swap(tree[o<<1|1].mi,tree[o<<1|1].ma);
     75     tree[o<<1|1].mi*=-1,tree[o<<1|1].ma*=-1;
     76 }
     77 void update(int o,int l,int r,int x,int val)
     78 {
     79     if(l==r){
     80         tree[o].ma=tree[o].mi=val;
     81         lazy[o]=0;
     82         return;
     83     }
     84     pushdown(o,l,r);
     85     int mid=(l+r)>>1;
     86     if(x<=mid) update(o<<1,l,mid,x,val);
     87     else update(o<<1|1,mid+1,r,x,val);
     88     pushup(o);
     89 }
     90 int query(int o,int l,int r,int ql,int qr)
     91 {
     92     if(l>=ql&&r<=qr) return tree[o].ma;
     93     pushdown(o,l,r);
     94     int ret=-inf;
     95     int mid=(l+r)>>1;
     96     if(ql<=mid) ret=max(ret,query(o<<1,l,mid,ql,qr));
     97     if(qr>mid) ret=max(ret,query(o<<1|1,mid+1,r,ql,qr));
     98     pushup(o);
     99     return ret;
    100 }
    101 int getmax(int x,int y)
    102 {
    103     int fx=top[x],fy=top[y],ret=-inf;
    104     while(fx!=fy){
    105         if(deep[fx]>deep[fy]){
    106             swap(x,y);
    107             swap(fx,fy);
    108         }
    109         ret=max(ret,query(1,1,n,dfn[fy],dfn[y]));
    110         y=fa[fy];
    111         fy=top[y];
    112     }
    113     if(x==y) return ret;
    114     if(deep[x]>deep[y]) swap(x,y);
    115     return max(ret,query(1,1,n,dfn[son[x]],dfn[y]));
    116 }
    117 void rever(int o,int l,int r,int ql,int qr)
    118 {
    119     if(l>=ql&&r<=qr){
    120         lazy[o]^=1;
    121         swap(tree[o].mi,tree[o].ma);
    122         tree[o].mi*=-1,tree[o].ma*=-1;
    123         return;
    124     }
    125     pushdown(o,l,r);
    126     int mid=(l+r)>>1;
    127     if(ql<=mid) rever(o<<1,l,mid,ql,qr);
    128     if(qr>mid) rever(o<<1|1,mid+1,r,ql,qr);
    129     pushup(o);
    130 }
    131 void Negate(int x,int y)
    132 {
    133     int fx=top[x],fy=top[y];
    134     while(fx!=fy){
    135         if(deep[fx]>deep[fy]){
    136             swap(x,y);
    137             swap(fx,fy);
    138         }
    139         rever(1,1,n,dfn[fy],dfn[y]);
    140         y=fa[fy];
    141         fy=top[y];
    142     }
    143     if(x==y) return;
    144     if(deep[x]>deep[y]) swap(x,y);
    145     rever(1,1,n,dfn[son[x]],dfn[y]);
    146 }
    147 int main()
    148 {
    149     int T,x,y,w;
    150     scanf("%d",&T);
    151     while(T--){
    152         init();
    153         scanf("%d",&n);
    154         for(int i=1;i<n;++i){
    155             scanf("%d%d%d",&x,&y,&w);
    156             add(x,y,w);
    157             add(y,x,w);
    158         }
    159         dfs1(1);
    160         dfs2(1,1);
    161         for(int i=1;i<=2*n-2;i+=2){
    162             int u=e[i].u,v=e[i].v;
    163             if(deep[u]>deep[v]) swap(u,v);
    164             update(1,1,n,dfn[v],e[i].w);
    165         }
    166         while(scanf("%s",s)!=EOF){
    167             if(s[0]=='D') break;
    168             scanf("%d%d",&x,&y);
    169             if(s[0]=='N') Negate(x,y);
    170             else if(s[0]=='C'){
    171                 x=x*2-1;
    172                 int u=e[x].u,v=e[x].v;
    173                 if(deep[u]>deep[v]) swap(u,v);
    174                 update(1,1,n,dfn[v],y);
    175             }
    176             else printf("%d
    ",getmax(x,y));
    177         }
    178         
    179     }
    180     return 0;
    181 }
  • 相关阅读:
    对java的Thread的理解
    Bugku的web题目(多次)的解题
    对网易云音乐参数(params,encSecKey)的分析
    并发编程知识的简单整理(二)
    并发编程知识的简单整理(一)
    用python代码编写的猜年龄小游戏
    python进阶与文件处理(数据类型分类,python深浅拷贝,异常处理,字符编码,基本文件操作,绝对路径和相对路径,,高级文件操作,文件的修改)
    计算机基础以及编程语言
    python基础-3(数据类型以及内置方法、解压缩、python与用户交互)
    python基础-2(格式化输出的三种方式,基本运算符,流程控制之if判断,流程控制之while循环,流程控制之for循环)
  • 原文地址:https://www.cnblogs.com/12mango/p/7327408.html
Copyright © 2011-2022 走看看