zoukankan      html  css  js  c++  java
  • HDU-1159 Common Subsequence 最长上升子序列

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 9595    Accepted Submission(s): 3923


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     

     

    Sample Input
    abcfbc abfcab programming contest abcd mnp
     

     

    Sample Output
    4 2 0
     
     
     
      前面写了一份代码,一直不知到哪里处理错了,后来参考了别人的代码后发现了一个别人都是那样写,但是我却一直没注意的地方,那就是动态的方程在第一个元素的相等的时,dp[0][0] = dp[-1][-1] + 1, 天哪,这肯定就会出错了。在处理时可以选择字符的读取从第一个位置开始,或者把 i 号字符的状态存储到i+1号位置去,这样就从1号开始处理了,判定是就是 s1[i-1] == s1[j-1] ?
      代码如下:
    复制代码
     1 #include <cstring>
    
    2 #include <cstdlib>
    3 #include <cstdio>
    4 #define Max( a, b ) (a) > (b) ? (a) : (b)
    5 using namespace std;
    6
    7 char s1[1005], s2[1005];
    8
    9 int dp[1005][1005];
    10
    11 int main()
    12 {
    13 int len1, len2;
    14 while( scanf( "%s %s", s1, s2 ) != EOF )
    15 {
    16 memset( dp, 0, sizeof(dp) );
    17 len1 = strlen( s1 ), len2 = strlen( s2 );
    18 for( int i = 1; i <= len1; ++i )
    19 {
    20 for( int j = 1; j <= len2; ++j )
    21 {
    22 if( s1[i-1] == s2[j-1] )
    23 {
    24 dp[i][j] = dp[i-1][j-1] + 1;
    25 }
    26 else
    27 {
    28 dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
    29 }
    30 }
    31 }
    32 printf( "%d ", dp[len1][len2] );
    33 }
    34 return 0;
    35 }
    复制代码

      第二种处理方法:

    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #define Max( a, b ) (a) > (b) ? (a) : (b)
    using namespace std;

    char s1[1005], s2[1005];

    int dp[1005][1005];

    int main()
    {
        int len1, len2;
        while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
        {
            memset( dp, 0, sizeof(dp) );
            len1 = strlen( s1+1 ), len2 = strlen( s2+1 );
            for( int i = 1; i <= len1; ++i )
            {
                for( int j = 1; j <= len2; ++j )
                {
                    if( s1[i] == s2[j] )
                    {
                        dp[i][j] = dp[i-1][j-1] + 1;
                    }
                    else
                    {
                        dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
                    }
                }
            }
            printf( "%d ", dp[len1][len2] );
        }

  • 相关阅读:
    腾讯云CentOS7学习
    听力词汇发音练习软件
    中缀表达式转后缀表达式
    两个升序序列的中位数
    CentOS配置静态IP
    一种简单的基于图像或激光雷达的道路(赛道)识别程序
    Win10+VS2019 配置YOLOv3
    【算法题】CCF CSP第二题练习(更新中)
    rpm的使用
    SCL
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/4393363.html
Copyright © 2011-2022 走看看