zoukankan      html  css  js  c++  java
  • HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)

    Problem Description
    For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.




    Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.
     
    Input
    Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2$lt;=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros end the input. The next line contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course, the diagonal will be all 0, since there is no edge connecting a node with itself.



    All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].

    The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree. 

     
    Output
    For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node number; if there's a tie, look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .
     
    Sample Input
    3 2 30 20 10 0 6 2 6 0 3 2 3 0 2 2 1 1 0 2 2 0 0 0
     
    Sample Output
    1 3 1 2
     


    题目大意:

    有一个n个点的图, 然后给出n*n的邻接矩阵图, 要求这个图的m个结点的子图,使得这个子图所有边之和与所有点之和的商值最小。


    分析与总结:

    直接dfs枚举出n个点所有的m个点的组合,然后对m个点求最小生成树,便可得出答案。

    dfs枚举n个点的m个点组合,对于每个点,要么属于这个组合,要么是不属于,所以复杂度为2^n,  n最大为15, 再加上减枝, 时间足足矣。


    #include<cstdio>
    #include<cstring>
    #define N 20
    int n,m,vis[N], ans[N], pre[N], hash[N];
    double G[N][N], weight[N], minCost[N], minRatio;
    double prim(){
        int u;
       memset(hash,0,sizeof(hash));
       for(int i=1;i<=n;i++){
           if(vis[i]){
            u=i;
            break;
           }
       }
    
       hash[u]=1;
       double weightsum=0,edgesum=0;
       for(int i=1;i<=n;i++)
       if(vis[i]){
        minCost[i]=G[u][i];
        pre[i]=u;
        weightsum+=weight[i];
       }
    
       for(int i=1;i<m;i++){
        u=-1;
          for(int j=1;j<=n;j++)
          if(vis[j]&&!hash[j]){
            if(minCost[u]>minCost[j]||u==-1)
                u=j;
          }
    
          edgesum+=G[pre[u]][u];
          hash[u]=1;
          for(int j=1;j<=n;j++)
    
          if(vis[j]&&!hash[j]){
            if(minCost[j]>G[u][j]){
                minCost[j]=G[u][j];
                pre[j]=u;
            }
          }
    
       }
    
    
       return edgesum/weightsum;
    }
    
    
    void dfs(int u,int num){
       if(num>m)
        return;
       if(u==n+1){
           if(num!=m)
            return ;
            double t=prim();
            if(t<minRatio){
                minRatio=t;
                memcpy(ans,vis,sizeof(vis));
            }
           return ;
       }
       vis[u]=1;
       dfs(u+1,num+1);
       vis[u]=0;
       dfs(u+1,num);
    }
    
    
    int main(){
        while(~scanf("%d%d",&n,&m)){
            if(m==0&&n==0) break;
            memset(G,0,sizeof(G));
            memset(weight,0,sizeof(weight));
            memset(vis,0,sizeof(vis));
    
            for(int i=1; i<=n; ++i)
                scanf("%lf",&weight[i]);
            for(int i=1; i<=n; ++i)
                for(int j=1; j<=n; ++j)
                    scanf("%lf",&G[i][j]);
    
            minRatio = 100000000;
            dfs(1, 0);
            bool flag=false;
            for(int i=1; i<=n; ++i)if(ans[i]){
                    if(flag) printf(" %d", i);
                    else{
                        printf("%d",i);
                        flag=true;
                    }
                }
               puts("");
        }
        return 0;
    }
  • 相关阅读:
    POJ 2253 Frogger
    POJ 2387
    codevs3981动态最大子段和(线段树)
    P3398仓鼠(LCA)
    codevs1036商务旅行(LCA)
    codevs3728联合权值(LCA)
    P3390矩阵快速幂
    codevs1574广义斐波那契数列
    POJ3070Fibonacci
    P3379最近公共祖先(LCA)
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/4691242.html
Copyright © 2011-2022 走看看