zoukankan      html  css  js  c++  java
  • poj1273 网络流入门题 dinic算法解决,可作模板使用

    Drainage Ditches
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 62078   Accepted: 23845

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

    Source

     
     
     
    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<queue>
    #include<algorithm>
    using namespace std;
    int edge[300][300];//邻接矩阵
    int dis[300];//距源点距离,分层图
    int start,end;
    int m,n;//N:点数;M,边数
    int bfs(){
       memset(dis,-1,sizeof(dis));//以-1填充
       dis[1]=0;
       queue<int>q;
       q.push(start);
       while(!q.empty()){
            int u=q.front();
            q.pop();
            for(int i=1;i<=n;i++){
                if(dis[i]<0&&edge[u][i]){
                    dis[i]=dis[u]+1;
                    q.push(i);
    
                }
            }
       }
       if(dis[n]>0)
        return 1;
       else
        return 0;//汇点的DIS小于零,表明BFS不到汇点
    }
    //Find代表一次增广,函数返回本次增广的流量,返回0表示无法增广
    int find(int x,int low){//Low是源点到现在最窄的(剩余流量最小)的边的剩余流量
        int a=0;
        if(x==n)
            return low;//是汇点
        for(int i=1;i<=n;i++){
            if(edge[x][i]>0&&dis[i]==dis[x]+1&&//联通,,是分层图的下一层
               (a=find(i,min(low,edge[x][i])))){//能到汇点(a <> 0)
                edge[x][i]-=a;
                edge[i][x]+=a;
                return a;
               }
    
        }
        return 0;
    }
    int main(){
       while(scanf("%d%d",&m,&n)!=EOF){
           memset(edge,0,sizeof(edge));
           for(int i=1;i<=m;i++){
              int u,v,w;
              scanf("%d%d%d",&u,&v,&w);
              edge[u][v]+=w;
           }
           start=1;
           end=n;
           int ans=0;
           while(bfs()){//要不停地建立分层图,如果BFS不到汇点才结束
            ans+=find(1,0x7fffffff);//一次BFS要不停地找增广路,直到找不到为止
           }
           printf("%d
    ",ans);
       }
       return 0;
    }
     
     
  • 相关阅读:
    【代码笔记】iOS-字符串替换回车和换行
    【代码笔记】iOS-在Block中修改外部变量值的
    【代码笔记】iOS-在导航栏中显示等待对话框
    【代码笔记】iOS-手机版本号,机型,操作系统版本,设备唯一标识符
    【代码笔记】iOS-密码在进入后台1小时后重新设置
    【代码笔记】iOS-获得现在的时间(2015-09-11)
    【代码笔记】iOS-对数组进行排序
    【代码笔记】iOS-播放从网络上下载的语音
    【代码笔记】iOS-将地址解析成经纬度
    【代码笔记】iOS-长条label
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/4695423.html
Copyright © 2011-2022 走看看