zoukankan      html  css  js  c++  java
  • poj3255 Roadblocks 次短路

    Roadblocks
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 10098   Accepted: 3620

    Description

    Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

    The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.

    The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

    Input

    Line 1: Two space-separated integers: N and R Lines 2..R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

    Output

    Line 1: The length of the second shortest path between node 1 and node N

    Sample Input

    4 4
    1 2 100
    2 4 200
    2 3 250
    3 4 100

    Sample Output

    450

    Hint

    Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)

    Source

    套的A*模板,注意最短路可能不止一条
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #include <queue>
    #define Max 10000
    #define inf 1<<28
    using namespace std;
    int S,T,K,n,m;
    int head[Max],rehead[Max];
    int num,renum;
    int dis[Max];
    bool visit[Max];
    int ans[Max];
    int qe[Max*10];
    struct kdq{
        int v,len,next;
    } edge[200005],reedge[200005];
    
    struct a_star {               //A*搜索时的优先级队列;
        int v;
        int len;
        bool operator<(const a_star &a)const{    //f(i)=d[i]+g[i]
            return len+dis[v]>a.len+dis[a.v];
        }
    };
    void insert(int u,int v,int len){//正图和逆图
        edge[num].v=v;
        edge[num].len=len;
        edge[num].next=head[u];
        head[u]=num;
        num++;
        reedge[renum].v=u;
        reedge[renum].len=len;
        reedge[renum].next=rehead[v];
        rehead[v]=renum;
        renum++;
    }
    
    void init(){
        memset(ans,0,sizeof(ans));
        for(int i=0; i<=n; i++)
            head[i]=-1,rehead[i]=-1;
        num=1,renum=1;
    }
    int ans1;
    void spfa(){//从T开始求出T到所有点的 dis[]
        int i,j;
        for(i=1; i<=n; i++)
            dis[i]=inf;
        dis[T]=0;
        visit[T]=1;
        int num=0,cnt=0;
        qe[num++]=T;
        while(num>cnt){
            int temp=qe[cnt++];
            visit[temp]=0;
            for(i=rehead[temp]; i!=-1 ; i=reedge[i].next){
                int tt=reedge[i].v;
                int ttt=reedge[i].len;
                if(dis[tt]>dis[temp]+ttt)
                {
                    dis[tt]=dis[temp]+ttt;
                    if(!visit[tt])
                    {
                        qe[num++]=tt;
                        visit[tt]=1;
                    }
                }
            }
        }
    }
    int A_star(){
        if(S==T)
            K++;
        if(dis[S]==inf)
            return -1;
        a_star n1;
        n1.v=S;
        n1.len=0;
        priority_queue <a_star> q;
        q.push(n1);
        while(!q.empty()){
            a_star temp=q.top();
            q.pop();
            ans[temp.v]++;
            if(ans[T]==K){//当第K次取到T的时候,输出路程
                if(temp.len==ans1)
                    K++;
                else
                return temp.len;
                }
            if(ans[temp.v]>K)
                continue;
            for(int i=head[temp.v]; i!=-1; i=edge[i].next){
                a_star n2;
                n2.v=edge[i].v;
                n2.len=edge[i].len+temp.len;
                q.push(n2);
            }
        }
        return -1;
    }
    int main(){
        int i,j,k,l;
        int a,b,s;
        while(scanf("%d%d",&n,&m)!=EOF){
          init();
        while(m--){
            scanf("%d%d%d",&a,&b,&s);
            insert(a,b,s);
            insert(b,a,s);
        }
        S=1,T=n,K=2;
        spfa();
        ans1=dis[S];
      //  printf("%d
    ",ans1);
        printf("%d
    ",A_star());
        }
        return 0;
    }
  • 相关阅读:
    Android多屏幕适配
    android应用签名详解
    内部类与静态内部类详解
    SpringBoot整合Spring Retry实现重试机制
    行为型模式之模板方法模式
    行为型模式之操作复杂对象结构(访问者模式)
    行为型模式之算法的封装与切换(策略模式)
    行为型模式之处理对象的多种状态及其相互转换(状态模式)
    行为型模式之对象间的联动(观察者模式)
    行为型模式之撤销功能的实现(备忘录模式)
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/4857566.html
Copyright © 2011-2022 走看看