zoukankan      html  css  js  c++  java
  • LCA+主席树 (求树上路径点权第k大)

    SPOJ 10628. Count on a tree (树上第k大,LCA+主席树)

    10628. Count on a tree

    Problem code: COT

     

    You are given a tree with N nodes.The tree nodes are numbered from 1 to N.Each node has an integer weight.

    We will ask you to perform the following operation:

    • u v k : ask for the kth minimum weight on the path from node u to node v

    Input

    In the first line there are two integers N and M.(N,M<=100000)

    In the second line there are N integers.The ith integer denotes the weight of the ith node.

    In the next N-1 lines,each line contains two integers u v,which describes an edge (u,v).

    In the next M lines,each line contains three integers u v k,which means an operation asking for the kth minimum weight on the path from node u to node v.

    Output

    For each operation,print its result.

    Example

    Input:
    8 5
    8 5
    105 2 9 3 8 5 7 7
    1 2        
    1 3
    1 4
    3 5
    3 6
    3 7
    4 8
    2 5 1
    2 5 2
    2 5 3
    2 5 4
    7 8 2 
    Output:
    2
    8
    9
    105

    在树上建立主席树。

    然后求LCA

    #include <stdio.h>
    #include <string.h>
    #include <iostream>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <string>
    #include <math.h>
    #include <stdlib.h>
    #include <time.h>
    using namespace std;
    
    //主席树部分 *****************8
    const int MAXN = 200010;
    const int M = MAXN * 40;
    int n,q,m,TOT;
    int a[MAXN], t[MAXN];
    int T[M], lson[M], rson[M], c[M];
    
    void Init_hash()
    {
        for(int i = 1; i <= n;i++)
            t[i] = a[i];
        sort(t+1,t+1+n);
        m = unique(t+1,t+n+1)-t-1;
    }
    int build(int l,int r)
    {
        int root = TOT++;
        c[root] = 0;
        if(l != r)
        {
            int mid = (l+r)>>1;
            lson[root] = build(l,mid);
            rson[root] = build(mid+1,r);
        }
        return root;
    }
    int hash(int x)
    {
        return lower_bound(t+1,t+1+m,x) - t;
    }
    int update(int root,int pos,int val)
    {
        int newroot = TOT++, tmp = newroot;
        c[newroot] = c[root] + val;
        int l = 1, r = m;
        while( l < r)
        {
            int mid = (l+r)>>1;
            if(pos <= mid)
            {
                lson[newroot] = TOT++; rson[newroot] = rson[root];
                newroot = lson[newroot]; root = lson[root];
                r = mid;
            }
            else
            {
                rson[newroot] = TOT++; lson[newroot] = lson[root];
                newroot = rson[newroot]; root = rson[root];
                l = mid+1;
            }
            c[newroot] = c[root] + val;
        }
        return tmp;
    }
    int query(int left_root,int right_root,int LCA,int k)
    {
        int lca_root = T[LCA];
        int pos = hash(a[LCA]);
        int l = 1, r = m;
        while(l < r)
        {
            int mid = (l+r)>>1;
            int tmp = c[lson[left_root]] + c[lson[right_root]] - 2*c[lson[lca_root]] + (pos >= l && pos <= mid);
            if(tmp >= k)
            {
                left_root = lson[left_root];
                right_root = lson[right_root];
                lca_root = lson[lca_root];
                r = mid;
            }
            else
            {
                k -= tmp;
                left_root = rson[left_root];
                right_root = rson[right_root];
                lca_root = rson[lca_root];
                l = mid + 1;
            }
        }
        return l;
    }
    
    //LCA部分
    int rmq[2*MAXN];//rmq数组,就是欧拉序列对应的深度序列
    struct ST
    {
        int mm[2*MAXN];
        int dp[2*MAXN][20];//最小值对应的下标
        void init(int n)
        {
            mm[0] = -1;
            for(int i = 1;i <= n;i++)
            {
                mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
                dp[i][0] = i;
            }
            for(int j = 1; j <= mm[n];j++)
                for(int i = 1; i + (1<<j) - 1 <= n; i++)
                    dp[i][j] = rmq[dp[i][j-1]] < rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
        }
        int query(int a,int b)//查询[a,b]之间最小值的下标
        {
            if(a > b)swap(a,b);
            int k = mm[b-a+1];
            return rmq[dp[a][k]] <= rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k];
        }
    };
    //边的结构体定义
    struct Edge
    {
        int to,next;
    };
    Edge edge[MAXN*2];
    int tot,head[MAXN];
    
    int F[MAXN*2];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
    int P[MAXN];//P[i]表示点i在F中第一次出现的位置
    int cnt;
    
    ST st;
    void init()
    {
        tot = 0;
        memset(head,-1,sizeof(head));
    }
    void addedge(int u,int v)//加边,无向边需要加两次
    {
        edge[tot].to = v;
        edge[tot].next = head[u];
        head[u] = tot++;
    }
    void dfs(int u,int pre,int dep)
    {
        F[++cnt] = u;
        rmq[cnt] = dep;
        P[u] = cnt;
        for(int i = head[u];i != -1;i = edge[i].next)
        {
            int v = edge[i].to;
            if(v == pre)continue;
            dfs(v,u,dep+1);
            F[++cnt] = u;
            rmq[cnt] = dep;
        }
    }
    void LCA_init(int root,int node_num)//查询LCA前的初始化
    {
        cnt = 0;
        dfs(root,root,0);
        st.init(2*node_num-1);
    }
    int query_lca(int u,int v)//查询u,v的lca编号
    {
        return F[st.query(P[u],P[v])];
    }
    
    void dfs_build(int u,int pre)
    {
        int pos = hash(a[u]);
        T[u] = update(T[pre],pos,1);
        for(int i = head[u]; i != -1;i = edge[i].next)
        {
            int v = edge[i].to;
            if(v == pre)continue;
            dfs_build(v,u);
        }
    }
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        while(scanf("%d%d",&n,&q) == 2)
        {
            for(int i = 1;i <= n;i++)
                scanf("%d",&a[i]);
            Init_hash();
            init();
            TOT = 0;
            int u,v;
            for(int i = 1;i < n;i++)
            {
                scanf("%d%d",&u,&v);
                addedge(u,v);
                addedge(v,u);
            }
            LCA_init(1,n);
            T[n+1] = build(1,m);
            dfs_build(1,n+1);
            int k;
            while(q--)
            {
                scanf("%d%d%d",&u,&v,&k);
                printf("%d
    ",t[query(T[u],T[v],query_lca(u,v),k)]);
            }
            return 0;
        }
        return 0;
    }
  • 相关阅读:
    Python面向对象(类的成员之属性)
    Python面向对象(类的成员之方法)
    Python面向对象(类的成员之字段)
    Python面向对象(多态)
    Python面向对象(继承)
    Python面向对象(构造方法)
    Python面向对象(self参数、封装)
    Python面向对象(定义类和创建对象)
    Pangolin库的使用
    Combinations
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/4868017.html
Copyright © 2011-2022 走看看