zoukankan      html  css  js  c++  java
  • hdu1054 树形dp&&二分图

    B - Strategic Game
    Time Limit:10000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

    Your program should find the minimum number of soldiers that Bob has to put for a given tree.

    The input file contains several data sets in text format. Each data set represents a tree with the following description:

    the number of nodes
    the description of each node in the following format
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
    or
    node_identifier:(0)

    The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

    For example for the tree:



    the solution is one soldier ( at the node 1).

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:
    4
    0:(1) 1
    1:(2) 2 3
    2:(0)
    3:(0)
    5
    3:(3) 1 4 2
    1:(1) 0
    2:(0)
    0:(0)
    4:(0)

    Sample Output

    1 2
    前几天刚做过这题,二分图A的,树形dp同样可以解决
    注意    此题要求任意一条路径上都应当有人看守,所有dp[root][0]+=dp[k][1],,,此处0的时候只能选着儿子节点的1
     
    dp[root][1]=min(dp[k][0],dp[k][1])
    题很水不多说了
    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int maxn=1505;
    struct node{
        int to,net;
    }edge[maxn<<1];
    
    int head[maxn];
    bool  vis[maxn];
    int dp[maxn][2];
    int tot;
    
    void addedge(int u,int v){
    
         edge[tot].to=v;
         edge[tot].net=head[u];
         head[u]=tot++;
    
         edge[tot].to=u;
         edge[tot].net=head[v];
         head[v]=tot++;
    
    }
    
    void dfs(int root){
        vis[root]=true;
        
        for(int i=head[root];i!=-1;i=edge[i].net){
            int v=edge[i].to;
            if(!vis[v]){
                dfs(v);
                dp[root][0]+=dp[v][1];
                dp[root][1]+=min(dp[v][1],dp[v][0]);
    
            }
        }
    }
    
    int main(){
        int t;
        while(scanf("%d",&t)!=EOF){
             memset(dp,0,sizeof(dp));
             memset(vis,false,sizeof(vis));
             tot=0;
             memset(head,-1,sizeof(head));
             for(int i=1;i<=t;i++){
                    int n,x,y;
                scanf("%d:(%d)",&x,&n);
                for(int j=1;j<=n;j++){
                    scanf("%d",&y);
                    addedge(x,y);
                }
             }
             int root=0;
               for(int i=0;i<t;i++)
                  dp[i][1]=1;
             dfs(root);
             int ans=min(dp[root][0],dp[root][1]);
            printf("%d
    ",ans);
        }
        return 0;
    }
     
  • 相关阅读:
    关于 MySQL int tinyint 类型的那点事
    PHP日期、时间戳相关的小程序
    [leedcode 236] Lowest Common Ancestor of a Binary Tree
    [leedcode 235] Lowest Common Ancestor of a Binary Search Tree
    [leedcode 234] Palindrome Linked List
    [leedcode 233] Number of Digit One
    [leedcode 232] Implement Queue using Stacks
    [leedcode 231] Power of Two
    [leedcode 230] Kth Smallest Element in a BST
    [leedcode 229] Majority Element II
  • 原文地址:https://www.cnblogs.com/13224ACMer/p/5317167.html
Copyright © 2011-2022 走看看