Solved | Pro.ID | Title | Ratio(Accepted / Submitted) |
---|---|---|---|
1001 | A + B = C | 10.52%(302/2872) | |
1002 | Bracket Sequences on Tree | 11.27%(16/142) | |
1003 | Cuber Occurrence | 6.67%(1/15) | |
1004 | Data Structure Problem | 23.08%(3/13) | |
1005 | Equation | 0.00%(0/63) | |
已补 | 1006 | Final Exam | 5.06%(297/5872) |
1007 | Getting Your Money Back | 12.42%(20/161) | |
1008 | Halt Hater | 14.77%(61/413) | |
1009 | Intersection of Prisms | 0.00%(0/2) | |
1010 | Just Repeat | 15.04%(128/851) | |
1011 | Kejin Player | 21.20%(544/2566) |
1006
这题想了很久,但是题解只有一句话
换位思考, 考虑如果我们是出题人会怎么让学生做不出 k 题, 即最坏情况.显然, 我们会挑出学 生复习得最少的 (n - k + 1) 道题, 让每道题的难度都等于他复习的时间.(田忌赛马的策略)
因此, 回到学生视角, 我们要让自己复习的最少的 (n - k + 1) 题复习时间总和 > m, 构造方式显然. 那么, QQ 小方还来得及复习吗?
既然要让复习最少的(n-k+1)题复习时间总和大于m,首先要保证复习时间最少的题目有多少复习时间。即(m/(n-k+1))。所以(m/(n-k+1) + 1)就是其他复习时间不是最少的题目的复习时间。
所以答案为((m/(n-k+1)+1)*(k-1) + m+1)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int t;
ll n,m,k;
int main(){
cin>>t;
while(t--){
scanf("%lld%lld%lld",&n,&m,&k);
ll d = k-1;
ll now = n-d;//n-k+1
ll ans = m + 1;
ll maxn = m / now + 1;
ans = ans + maxn * d;
printf("%lld
",ans);
}
return 0;
}
1011
设(E_i) 为第(i) 关到(i+1) 的期望花费,那么
[E_i = p * a_i + (1-p)*(sum_{{j=x_i}}^{{i-1}}E_j+E_i+a_i)
]
则
[E_i = {(sum_{{j=x_i}}^{{i-1}}E_j+a_i)*(1-p)over p} + a_i
]
最后(l)到(r) 的期望花费即(sum_{j=l}^{r-1}E_j)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 1e9 + 7;
inline int read()
{
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
ll gcd(ll x, ll y) {
if(y == 0) return x;
return gcd(y, x % y);
}
ll pow_mod(ll x, ll y) {
ll res = 1;
while(y) {
if(y & 1) res = res * x % mod;
x = x * x % mod;
y >>= 1;
}
return res;
}
int r[500005];
int s[500005];
int x[500005];
int a[500005];
ll pre[500005];
int main() {
int T;
scanf("%d", &T);
while(T--) {
int n, m;
n = read(); m = read();
for(int i = 1; i <= n; i++) {
r[i] = read(), s[i] = read(), x[i] = read(), a[i] = read();
}
pre[0] = 0LL;
for(int i = 1; i <= n; i++) {
ll tmp = 1LL * (s[i] - r[i]) * pow_mod(1LL * r[i], mod - 2LL) % mod;
tmp = ((pre[i - 1] - pre[x[i] - 1] + a[i]) * tmp % mod + a[i]) % mod;
pre[i] = (pre[i - 1] + tmp) % mod;
pre[i] = (pre[i] + mod) % mod;
}
while(m--) {
int l, r;
l = read();
r = read();
printf("%lld
", ((pre[r - 1] - pre[l - 1]) + mod) % mod);
}
}
return 0;
}