zoukankan      html  css  js  c++  java
  • how to find Longest Increasing Subsequence Size

    DP  assume the indices of the array are from 0 to N - 1. So let's define DP[i] to be the length of the LIS (Longest increasing subsequence) which is ending at element with index i. To compute DP[i] we look at all indices j < i and check both if DP[j] + 1 > DP[i] and array[j] < array[i] (we want it to be increasing). If this is true we can update the current optimum for DP[i]. To find the global optimum for the array you can take the maximum value from DP[0...N - 1]

    int maxLength = 1, bestEnd = 0;
    DP[0] = 1;
    prev[0] = -1;
    
    for (int i = 1; i < N; i++)
    {
       DP[i] = 1;
       prev[i] = -1;
    
       for (int j = i - 1; j >= 0; j--)
          if (DP[j] + 1 > DP[i] && array[j] < array[i])
          {
             DP[i] = DP[j] + 1;
             prev[i] = j;
          }
    
       if (DP[i] > maxLength)
       {
          bestEnd = i;
          maxLength = DP[i];
       }
    }

    use the array prev to be able later to find the actual sequence not only its length. Just go back recursively from bestEnd in a loop using prev[bestEnd]. The -1 value is a sign to stop. 


    another way  Longest Increasing Subsequence Size (N log N)

    The strategy determined by the following conditions,

    1. If A[i] is smallest among all end 
       candidates of active lists, we will start 
       new active list of length 1.
    2. If A[i] is largest among all end candidates of 
      active lists, we will clone the largest active 
      list, and extend it by A[i].
    
    3. If A[i] is in between, we will find a list with 
      largest end element that is smaller than A[i]. 
      Clone and extend this list by A[i]. We will discard all
      other lists of same length as that of this modified list.

    we can maintain one arrays like this, which always record the smallest elements, the specific process is as follows

    Let‘s take a example , array A {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}.A[0] = 0. Case 1. There are no active lists, create one.0.-----------------------------------------------------------------------------A[1] = 8. Case 2. Clone and extend.0.

    0, 8.
    -----------------------------------------------------------------------------
    A[2] = 4. Case 3. Clone, extend and discard.
    0, 4.
    0, 8. Discarded
    -----------------------------------------------------------------------------
    A[3] = 12. Case 2. Clone and extend.
    0, 4.
    0, 4, 12.
    -----------------------------------------------------------------------------
    A[4] = 2. Case 3. Clone, extend and discard.
    0.
    0, 4. Discarded.
    0, 2, 12.
    -----------------------------------------------------------------------------
    A[5] = 10. Case 3. Clone, extend and discard.
    0, 4, 12. Discarded.
    0, 2, 10. ----------------------------------------------------------------------------- A[6] = 6. Case 3. Clone, extend and discard.

    0, 2, 10. Discarded.

    0, 2, 6. ----------------------------------------------------------------------------- A[7] = 14. Case 2. Clone and extend. 0, 2, 6. 0, 2, 6, 14. ----------------------------------------------------------------------------- A[8] = 1. Case 3. Clone, extend and discard.
    0, 2. Discarded.
    0, 1, 6, 14. ----------------------------------------------------------------------------- A[9] = 9. Case 3. Clone, extend and discard.

    0, 2, 6, 14. Discarded.
    0, 2, 6, 9. ----------------------------------------------------------------------------- A[10] = 5. Case 3. Clone, extend and discard.
    0, 2, 6. Discarded.
    0, 2, 6, 9. ----------------------------------------------------------------------------- A[11] = 13. Case 2. Clone and extend. 0, 2, 6, 9. 0, 2, 6, 9, 13. ----------------------------------------------------------------------------- A[12] = 3. Case 3. Clone, extend and discard.

    0, 2, 6, 9, 13.

    0, 2, 3, 9, 13.
    ----------------------------------------------------------------------------- A[13] = 11. Case 3. Clone, extend and discard.

    0, 2, 6, 9, 13. Discarded.
    0, 2, 6, 9, 11. ----------------------------------------------------------------------------- A[14] = 7. Case 3. Clone, extend and discard.

    0, 2, 6, 9, 11.
    0, 2, 6, 7, 11. ---------------------------------------------------------------------------- A[15] = 15. Case 2. Clone and extend. 0, 2, 6, 9, 11. 0, 2, 6, 9, 11, 15. <-- LIS List ----------------------------------------------------------------------------

    Here is a proverb, “Tell me and I will forget. Show me and I will remember. Involve me and I will understand.”
    So, pick a suit from deck of cards. Find the longest increasing sub-sequence of cards from the shuffled suit. You will never forget the approach.
    #include<bits/stdc++.h> 
    using namespace std;
    int LongestIncreasingSubsequenceLength(std::vector<int>& v) 
    { 
        if (v.size() == 0) return 0; 
    
        std::vector<int> tail;  // always points empty slot in tail 
    
        tail.push_back(v[0]);  int n = v.size();
        for (int i = 1; i < n; i++) { 
            // Do binary search for the element in, the range from begin to begin + length 
            auto it = lower_bound(tail.begin(), tail.end(), v[i]); 
            // If not present change the tail element to v[i] 
            if (it == tail.begin() + tail.size()) tail.push_back(v[i]);// v[i] is lagger than tail.end()
            else    *it = v[i];
        } 
        return tail.size(); 
    } 
    
    
    int main() 
    {   
        int t; 
        scanf("%d", &t);
        //t = 1;
        while(t--){
            int n; scanf("%d", &n);
            std::vector<int> v(n+1); 
            for(int i = 0; i < n; i++) scanf("%d", &v[i]);
        //std::cout << v.size() << "   = v.size() 
    ";
            printf("Length of Longest Increasing Subsequence is %d
    ",
              LongestIncreasingSubsequenceLength(v));  
        }
        return 0; 
    } 
    0, 2, 10. Discarded.
  • 相关阅读:
    第一个WPF
    redis pub/sub 发布订阅
    php中header函数后是否应该有exit
    redis的图形界面管理工具
    redis key和value数据类型
    螺旋式打印一个二维数组
    jquery 提示插件 cluetip
    php异常处理
    ruby Methods, Procs, Lambdas, and Closures
    ruby迭代器iterator和枚举器Enumerator
  • 原文地址:https://www.cnblogs.com/163467wyj/p/12026558.html
Copyright © 2011-2022 走看看