zoukankan      html  css  js  c++  java
  • k-medoids与k-Means聚类算法的异同

    K-Means

    K-Medoids

    初始据点随机选取

    初始随机据点限定在样本点中

    使用Means(均值)作为聚点,对outliers(极值)很敏感

    使用Medoids(中位数)作为聚点

    对数据要求高,要求数据点处于欧式空间中

    可适用类别(categorical)类型的特征——(4)

    时间复杂度:O(n*k*t),t为迭代次数

    时间复杂度:O(n^2 *k*t),t为迭代次数——(4)

     K-Means 算法对小规模数据集较高效(efficient  for  smaller  data  sets)

    K-Medoids算法对大规模数据性能更好,但伸缩性较差——(3)

    都有可能陷入局部最优解的困境之中

    K的含义相同,都需要开始人为设定簇数目

    都是无监督算法

    References:

    1. Velmurugan T. Efficiency of K-Means and K-Medoids algorithms for clustering arbitrary data points[J]. International Journal of Computer Technology & Applications, 2012, 3(5): 1758-64.
    2. Arbin N, Mokhtar N Z, Suhaimi N S, et al. Comparative Analysis between K-Means and K-Medoids for Statistical Clustering[J].
    3. Velmurugan T, Santhanam T. Computational complexity between K-means and K-medoids clustering algorithms for normal and uniform distributions of data points[J]. Journal of computer science, 2010, 6(3): 363.
    4. http://blog.pluskid.org/?p=40
    5. https://www.youtube.com/watch?v=u1NtKPuXQKo
  • 相关阅读:
    基本MVVM 和 ICommand用法举例(转)
    WPF C# 命令的运行机制
    628. Maximum Product of Three Numbers
    605. Can Place Flowers
    581. Shortest Unsorted Continuous Subarray
    152. Maximum Product Subarray
    216. Combination Sum III
    448. Find All Numbers Disappeared in an Array
    268. Missing Number
    414. Third Maximum Number
  • 原文地址:https://www.cnblogs.com/190260995xixi/p/5954921.html
Copyright © 2011-2022 走看看