协程:
是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级 线程,即协程是由用户程序自己控制调度的。
强调:
1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
单线程内控制线程切换
优点:
1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
2. 单线程内就可以实现并发的效果,最大限度地利用cpu
缺点:
1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
协程的特点
- 必须在只有一个单线程里实现并发
- 修改共享数据不需加锁
- 用户程序里自己保存多个控制流的上下文栈
- 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))
Greenlet
#安装
pip3 install greenlet
from greenlet import greenlet def eat(name): print('%s eat 1' %name) g2.switch('lb') print('%s eat 2' %name) g2.switch() def play(name): print('%s play 1' %name) g1.switch() print('%s play 2' %name) g1=greenlet(eat) g2=greenlet(play) g1.switch('lb')#可以在第一次switch时传入参数,以后都不需要
单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题
#顺序执行 import time def f1(): res=1 for i in range(100000000): res+=i def f2(): res=1 for i in range(100000000): res*=i start=time.time() f1() f2() stop=time.time() print('run time is %s' %(stop-start)) #10.985628366470337 #切换 from greenlet import greenlet import time def f1(): res=1 for i in range(100000000): res+=i g2.switch() def f2(): res=1 for i in range(100000000): res*=i g1.switch() start=time.time() g1=greenlet(f1) g2=greenlet(f2) g1.switch() stop=time.time() print('run time is %s' %(stop-start)) # 52.763017892837524
Gevent介绍
#安装
pip3 install gevent
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主
要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主
程序操作系统进程的内部,但它们被协作式地调度。
g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的 g2=gevent.spawn(func2) g1.join() #等待g1结束 g2.join() #等待g2结束 #或者上述两步合作一步:gevent.joinall([g1,g2]) g1.value#拿到func1的返回值
遇到I/O阻塞时会自动切换任务
import gevent def eat(name): print('%s eat 1' %name) gevent.sleep(2) print('%s eat 2' %name) def play(name): print('%s play 1' %name) gevent.sleep(1) print('%s play 2' %name) g1=gevent.spawn(eat,'egon') g2=gevent.spawn(play,name='egon') g1.join() g2.join() #或者gevent.joinall([g1,g2]) print('主')
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,
而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了
from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前
或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头
from gevent import monkey;monkey.patch_all() import gevent import time def eat(): print('eat food 1') time.sleep(2) print('eat food 2') def play(): print('play 1') time.sleep(1) print('play 2') g1=gevent.spawn(eat) g2=gevent.spawn(play_phone) gevent.joinall([g1,g2]) print('主')
Gevent之同步与异步
from gevent import spawn,joinall,monkey;monkey.patch_all() import time def task(pid): """ Some non-deterministic task """ time.sleep(0.5) print('Task %s done' % pid) def synchronous(): for i in range(10): task(i) def asynchronous(): g_l=[spawn(task,i) for i in range(10)] joinall(g_l) if __name__ == '__main__': print('Synchronous:') synchronous() print('Asynchronous:') asynchronous() #上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走
Gevent应用
from gevent import monkey;monkey.patch_all() import gevent import requests import time def get_page(url): print('GET: %s' %url) response=requests.get(url) if response.status_code == 200: print('%d bytes received from %s' %(len(response.text),url)) start_time=time.time() # get_page('https://www.python.org/') # get_page('https://www.yahoo.com/') # get_page('https://github.com/') g1=gevent.spawn(get_page, 'https://www.python.org/') g2=gevent.spawn(get_page, 'https://www.yahoo.com/') g3=gevent.spawn(get_page, 'https://github.com/') gevent.joinall([g1,g2,g3]) stop_time=time.time() print('run time is %s' %(stop_time-start_time))
from gevent import monkey;monkey.patch_all() import gevent from socket import * def talk(conn,addr): while True: data=conn.recv(1024) print('%s:%s %s' %(addr[0],addr[1],data)) conn.send(data.upper()) conn.close() def server(ip,port): s = socket(AF_INET, SOCK_STREAM) s.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) s.bind((ip,port)) s.listen(5) while True: conn,addr=s.accept() gevent.spawn(talk,conn,addr) s.close() if __name__ == '__main__': server('127.0.0.1', 8088)
from multiprocessing import Process from socket import * def client(server_ip,server_port): client=socket(AF_INET,SOCK_STREAM) client.connect((server_ip,server_port)) while True: client.send('hello'.encode('utf-8')) msg=client.recv(1024) print(msg.decode('utf-8')) if __name__ == '__main__': for i in range(500): p=Process(target=client,args=('127.0.0.1',8088)) p.start()
from threading import Thread from socket import * import threading def client(server_ip,port): c=socket(AF_INET,SOCK_STREAM) #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了 c.connect((server_ip,port)) count=0 while True: c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8')) msg=c.recv(1024) print(msg.decode('utf-8')) count+=1 if __name__ == '__main__': for i in range(500): t=Thread(target=client,args=('127.0.0.1',8080)) t.start()