计算几何
我们先把所有的线段求出来,我们发现只有两个线段等长且中点重合时才能构成矩形,那么线段有n*n条,我们按中点,长度排序,然后对于一条线段扫描所有符合条件的线段计算答案,这样看起来是O(n^3)次的,实际上远远到不了
但是1336和1765两道题空间较小,不能乱开空间
#include<bits/stdc++.h> using namespace std; const int N = 4010; int n; double ans; int x[N], y[N]; struct line { int mx, my, x1, x2, y1, y2; long long len; bool friend operator < (line A, line B) { if(A.mx != B.mx) return A.mx < B.mx; if(A.my != B.my) return A.my < B.my; if(A.len != B.len) return A.len < B.len; return true; } line(int mx, int my, long long len, int x1, int y1, int x2, int y2) : mx(mx), my(my), len(len), x1(x1), y1(y1), x2(x2), y2(y2) {} }; vector<line> v; inline long long sqr(long long x) { return x * x; } inline double Area(line a, line b) { double disa = sqrt(sqr(a.x1 - b.x1) + sqr(a.y1 - b.y1)), disb = sqrt(sqr(a.x2 - b.x1) + sqr(a.y1 - b.y2)); return disa * disb; } int main() { // freopen("crectangle.in", "r", stdin); // freopen("crectangle.out", "w", stdout); scanf("%d", &n); for(int i = 1; i <= n; ++i) scanf("%d%d", &x[i], &y[i]); for(int i = 1; i <= n; ++i) for(int j = i + 1; j <= n; ++j) { long long len = sqr(x[i] - x[j]) + sqr(y[i] - y[j]); v.push_back(line(x[i] + x[j], y[i] + y[j], len, x[i], y[i], x[j], y[j])); } sort(v.begin(), v.end()); for(int i = 1; i < v.size(); ++i) { line a = v[i]; for(int j = i - 1; j >= 0; --j) { line b = v[j]; if(a.mx != b.mx || a.my != b.my || a.len != b.len) break; ans = max(ans, Area(a, b)); } } printf("%.0f ", ans); // fclose(stdin); // fclose(stdout); return 0; }