zoukankan      html  css  js  c++  java
  • OpenCV Machine Learning (C++)

    /*M///////////////////////////////////////////////////////////////////////////////////////
    //
    // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
    //
    // By downloading, copying, installing or using the software you agree to this license.
    // If you do not agree to this license, do not download, install,
    // copy or use the software.
    //
    //
    // Intel License Agreement
    //
    // Copyright (C) 2000, Intel Corporation, all rights reserved.
    // Third party copyrights are property of their respective owners.
    //
    // Redistribution and use in source and binary forms, with or without modification,
    // are permitted provided that the following conditions are met:
    //
    // * Redistribution's of source code must retain the above copyright notice,
    // this list of conditions and the following disclaimer.
    //
    // * Redistribution's in binary form must reproduce the above copyright notice,
    // this list of conditions and the following disclaimer in the documentation
    // and/or other materials provided with the distribution.
    //
    // * The name of Intel Corporation may not be used to endorse or promote products
    // derived from this software without specific prior written permission.
    //
    // This software is provided by the copyright holders and contributors "as is" and
    // any express or implied warranties, including, but not limited to, the implied
    // warranties of merchantability and fitness for a particular purpose are disclaimed.
    // In no event shall the Intel Corporation or contributors be liable for any direct,
    // indirect, incidental, special, exemplary, or consequential damages
    // (including, but not limited to, procurement of substitute goods or services;
    // loss of use, data, or profits; or business interruption) however caused
    // and on any theory of liability, whether in contract, strict liability,
    // or tort (including negligence or otherwise) arising in any way out of
    // the use of this software, even if advised of the possibility of such damage.
    //
    //M*/

    #ifndef __OPENCV_ML_HPP__
    #define __OPENCV_ML_HPP__

    #include "opencv2/core/core.hpp"
    #include <limits.h>

    #ifdef __cplusplus

    #include <map>
    #include <string>
    #include <iostream>

    // Apple defines a check() macro somewhere in the debug headers
    // that interferes with a method definiton in this header
    #undef check

    /****************************************************************************************
    * Main struct definitions *
    ****************************************************************************************/

    /* log(2*PI) */
    #define CV_LOG2PI (1.8378770664093454835606594728112)

    /* columns of <trainData> matrix are training samples */
    #define CV_COL_SAMPLE 0

    /* rows of <trainData> matrix are training samples */
    #define CV_ROW_SAMPLE 1

    #define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE)

    struct CvVectors
    {
    int type;
    int dims, count;
    CvVectors* next;
    union
    {
    uchar** ptr;
    float** fl;
    double** db;
    } data;
    };

    #if 0
    /* A structure, representing the lattice range of statmodel parameters.
    It is used for optimizing statmodel parameters by cross-validation method.
    The lattice is logarithmic, so <step> must be greater then 1. */
    typedef struct CvParamLattice
    {
    double min_val;
    double max_val;
    double step;
    }
    CvParamLattice;

    CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val,
    double log_step )
    {
    CvParamLattice pl;
    pl.min_val = MIN( min_val, max_val );
    pl.max_val = MAX( min_val, max_val );
    pl.step = MAX( log_step, 1. );
    return pl;
    }

    CV_INLINE CvParamLattice cvDefaultParamLattice( void )
    {
    CvParamLattice pl = {0,0,0};
    return pl;
    }
    #endif

    /* Variable type */
    #define CV_VAR_NUMERICAL 0
    #define CV_VAR_ORDERED 0
    #define CV_VAR_CATEGORICAL 1

    #define CV_TYPE_NAME_ML_SVM "opencv-ml-svm"
    #define CV_TYPE_NAME_ML_KNN "opencv-ml-knn"
    #define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian"
    #define CV_TYPE_NAME_ML_EM "opencv-ml-em"
    #define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree"
    #define CV_TYPE_NAME_ML_TREE "opencv-ml-tree"
    #define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp"
    #define CV_TYPE_NAME_ML_CNN "opencv-ml-cnn"
    #define CV_TYPE_NAME_ML_RTREES "opencv-ml-random-trees"
    #define CV_TYPE_NAME_ML_ERTREES "opencv-ml-extremely-randomized-trees"
    #define CV_TYPE_NAME_ML_GBT "opencv-ml-gradient-boosting-trees"

    #define CV_TRAIN_ERROR 0
    #define CV_TEST_ERROR 1

    class CV_EXPORTS_W CvStatModel
    {
    public:
    CvStatModel();
    virtual ~CvStatModel();

    virtual void clear();

    CV_WRAP virtual void save( const char* filename, const char* name=0 ) const;
    CV_WRAP virtual void load( const char* filename, const char* name=0 );

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );

    protected:
    const char* default_model_name;
    };

    /****************************************************************************************
    * Normal Bayes Classifier *
    ****************************************************************************************/

    /* The structure, representing the grid range of statmodel parameters.
    It is used for optimizing statmodel accuracy by varying model parameters,
    the accuracy estimate being computed by cross-validation.
    The grid is logarithmic, so <step> must be greater then 1. */

    class CvMLData;

    struct CV_EXPORTS_W_MAP CvParamGrid
    {
    // SVM params type
    enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 };

    CvParamGrid()
    {
    min_val = max_val = step = 0;
    }

    CvParamGrid( double min_val, double max_val, double log_step );
    //CvParamGrid( int param_id );
    bool check() const;

    CV_PROP_RW double min_val;
    CV_PROP_RW double max_val;
    CV_PROP_RW double step;
    };

    inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step )
    {
    min_val = _min_val;
    max_val = _max_val;
    step = _log_step;
    }

    class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel
    {
    public:
    CV_WRAP CvNormalBayesClassifier();
    virtual ~CvNormalBayesClassifier();

    CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses,
    const CvMat* varIdx=0, const CvMat* sampleIdx=0 );

    virtual bool train( const CvMat* trainData, const CvMat* responses,
    const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false );

    virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const;
    CV_WRAP virtual void clear();

    CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses,
    const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() );
    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
    const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
    bool update=false );
    CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const;

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );

    protected:
    int var_count, var_all;
    CvMat* var_idx;
    CvMat* cls_labels;
    CvMat** count;
    CvMat** sum;
    CvMat** productsum;
    CvMat** avg;
    CvMat** inv_eigen_values;
    CvMat** cov_rotate_mats;
    CvMat* c;
    };


    /****************************************************************************************
    * K-Nearest Neighbour Classifier *
    ****************************************************************************************/

    // k Nearest Neighbors
    class CV_EXPORTS_W CvKNearest : public CvStatModel
    {
    public:

    CV_WRAP CvKNearest();
    virtual ~CvKNearest();

    CvKNearest( const CvMat* trainData, const CvMat* responses,
    const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 );

    virtual bool train( const CvMat* trainData, const CvMat* responses,
    const CvMat* sampleIdx=0, bool is_regression=false,
    int maxK=32, bool updateBase=false );

    virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0,
    const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const;

    CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses,
    const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 );

    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
    const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false,
    int maxK=32, bool updateBase=false );

    virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0,
    const float** neighbors=0, cv::Mat* neighborResponses=0,
    cv::Mat* dist=0 ) const;
    CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
    CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const;

    virtual void clear();
    int get_max_k() const;
    int get_var_count() const;
    int get_sample_count() const;
    bool is_regression() const;

    virtual float write_results( int k, int k1, int start, int end,
    const float* neighbor_responses, const float* dist, CvMat* _results,
    CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const;

    virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
    float* neighbor_responses, const float** neighbors, float* dist ) const;

    protected:

    int max_k, var_count;
    int total;
    bool regression;
    CvVectors* samples;
    };

    /****************************************************************************************
    * Support Vector Machines *
    ****************************************************************************************/

    // SVM training parameters
    struct CV_EXPORTS_W_MAP CvSVMParams
    {
    CvSVMParams();
    CvSVMParams( int svm_type, int kernel_type,
    double degree, double gamma, double coef0,
    double Cvalue, double nu, double p,
    CvMat* class_weights, CvTermCriteria term_crit );

    CV_PROP_RW int svm_type;
    CV_PROP_RW int kernel_type;
    CV_PROP_RW double degree; // for poly
    CV_PROP_RW double gamma; // for poly/rbf/sigmoid
    CV_PROP_RW double coef0; // for poly/sigmoid

    CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
    CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
    CV_PROP_RW double p; // for CV_SVM_EPS_SVR
    CvMat* class_weights; // for CV_SVM_C_SVC
    CV_PROP_RW CvTermCriteria term_crit; // termination criteria
    };


    struct CV_EXPORTS CvSVMKernel
    {
    typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs,
    const float* another, float* results );
    CvSVMKernel();
    CvSVMKernel( const CvSVMParams* params, Calc _calc_func );
    virtual bool create( const CvSVMParams* params, Calc _calc_func );
    virtual ~CvSVMKernel();

    virtual void clear();
    virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results );

    const CvSVMParams* params;
    Calc calc_func;

    virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs,
    const float* another, float* results,
    double alpha, double beta );

    virtual void calc_linear( int vec_count, int vec_size, const float** vecs,
    const float* another, float* results );
    virtual void calc_rbf( int vec_count, int vec_size, const float** vecs,
    const float* another, float* results );
    virtual void calc_poly( int vec_count, int vec_size, const float** vecs,
    const float* another, float* results );
    virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs,
    const float* another, float* results );
    };


    struct CvSVMKernelRow
    {
    CvSVMKernelRow* prev;
    CvSVMKernelRow* next;
    float* data;
    };


    struct CvSVMSolutionInfo
    {
    double obj;
    double rho;
    double upper_bound_p;
    double upper_bound_n;
    double r; // for Solver_NU
    };

    class CV_EXPORTS CvSVMSolver
    {
    public:
    typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j );
    typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed );
    typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r );

    CvSVMSolver();

    CvSVMSolver( int count, int var_count, const float** samples, schar* y,
    int alpha_count, double* alpha, double Cp, double Cn,
    CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
    SelectWorkingSet select_working_set, CalcRho calc_rho );
    virtual bool create( int count, int var_count, const float** samples, schar* y,
    int alpha_count, double* alpha, double Cp, double Cn,
    CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
    SelectWorkingSet select_working_set, CalcRho calc_rho );
    virtual ~CvSVMSolver();

    virtual void clear();
    virtual bool solve_generic( CvSVMSolutionInfo& si );

    virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y,
    double Cp, double Cn, CvMemStorage* storage,
    CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si );
    virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y,
    CvMemStorage* storage, CvSVMKernel* kernel,
    double* alpha, CvSVMSolutionInfo& si );
    virtual bool solve_one_class( int count, int var_count, const float** samples,
    CvMemStorage* storage, CvSVMKernel* kernel,
    double* alpha, CvSVMSolutionInfo& si );

    virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y,
    CvMemStorage* storage, CvSVMKernel* kernel,
    double* alpha, CvSVMSolutionInfo& si );

    virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y,
    CvMemStorage* storage, CvSVMKernel* kernel,
    double* alpha, CvSVMSolutionInfo& si );

    virtual float* get_row_base( int i, bool* _existed );
    virtual float* get_row( int i, float* dst );

    int sample_count;
    int var_count;
    int cache_size;
    int cache_line_size;
    const float** samples;
    const CvSVMParams* params;
    CvMemStorage* storage;
    CvSVMKernelRow lru_list;
    CvSVMKernelRow* rows;

    int alpha_count;

    double* G;
    double* alpha;

    // -1 - lower bound, 0 - free, 1 - upper bound
    schar* alpha_status;

    schar* y;
    double* b;
    float* buf[2];
    double eps;
    int max_iter;
    double C[2]; // C[0] == Cn, C[1] == Cp
    CvSVMKernel* kernel;

    SelectWorkingSet select_working_set_func;
    CalcRho calc_rho_func;
    GetRow get_row_func;

    virtual bool select_working_set( int& i, int& j );
    virtual bool select_working_set_nu_svm( int& i, int& j );
    virtual void calc_rho( double& rho, double& r );
    virtual void calc_rho_nu_svm( double& rho, double& r );

    virtual float* get_row_svc( int i, float* row, float* dst, bool existed );
    virtual float* get_row_one_class( int i, float* row, float* dst, bool existed );
    virtual float* get_row_svr( int i, float* row, float* dst, bool existed );
    };


    struct CvSVMDecisionFunc
    {
    double rho;
    int sv_count;
    double* alpha;
    int* sv_index;
    };


    // SVM model
    class CV_EXPORTS_W CvSVM : public CvStatModel
    {
    public:
    // SVM type
    enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };

    // SVM kernel type
    enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3 };

    // SVM params type
    enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };

    CV_WRAP CvSVM();
    virtual ~CvSVM();

    CvSVM( const CvMat* trainData, const CvMat* responses,
    const CvMat* varIdx=0, const CvMat* sampleIdx=0,
    CvSVMParams params=CvSVMParams() );

    virtual bool train( const CvMat* trainData, const CvMat* responses,
    const CvMat* varIdx=0, const CvMat* sampleIdx=0,
    CvSVMParams params=CvSVMParams() );

    virtual bool train_auto( const CvMat* trainData, const CvMat* responses,
    const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params,
    int kfold = 10,
    CvParamGrid Cgrid = get_default_grid(CvSVM::C),
    CvParamGrid gammaGrid = get_default_grid(CvSVM::GAMMA),
    CvParamGrid pGrid = get_default_grid(CvSVM::P),
    CvParamGrid nuGrid = get_default_grid(CvSVM::NU),
    CvParamGrid coeffGrid = get_default_grid(CvSVM::COEF),
    CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE),
    bool balanced=false );

    virtual float predict( const CvMat* sample, bool returnDFVal=false ) const;
    virtual float predict( const CvMat* samples, CV_OUT CvMat* results ) const;

    CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses,
    const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
    CvSVMParams params=CvSVMParams() );

    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
    const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
    CvSVMParams params=CvSVMParams() );

    CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses,
    const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params,
    int k_fold = 10,
    CvParamGrid Cgrid = CvSVM::get_default_grid(CvSVM::C),
    CvParamGrid gammaGrid = CvSVM::get_default_grid(CvSVM::GAMMA),
    CvParamGrid pGrid = CvSVM::get_default_grid(CvSVM::P),
    CvParamGrid nuGrid = CvSVM::get_default_grid(CvSVM::NU),
    CvParamGrid coeffGrid = CvSVM::get_default_grid(CvSVM::COEF),
    CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE),
    bool balanced=false);
    CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
    CV_WRAP_AS(predict_all) void predict( cv::InputArray samples, cv::OutputArray results ) const;

    CV_WRAP virtual int get_support_vector_count() const;
    virtual const float* get_support_vector(int i) const;
    virtual CvSVMParams get_params() const { return params; };
    CV_WRAP virtual void clear();

    static CvParamGrid get_default_grid( int param_id );

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );
    CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; }

    protected:

    virtual bool set_params( const CvSVMParams& params );
    virtual bool train1( int sample_count, int var_count, const float** samples,
    const void* responses, double Cp, double Cn,
    CvMemStorage* _storage, double* alpha, double& rho );
    virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples,
    const CvMat* responses, CvMemStorage* _storage, double* alpha );
    virtual void create_kernel();
    virtual void create_solver();

    virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const;

    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    void optimize_linear_svm();

    CvSVMParams params;
    CvMat* class_labels;
    int var_all;
    float** sv;
    int sv_total;
    CvMat* var_idx;
    CvMat* class_weights;
    CvSVMDecisionFunc* decision_func;
    CvMemStorage* storage;

    CvSVMSolver* solver;
    CvSVMKernel* kernel;

    private:
    CvSVM(const CvSVM&);
    CvSVM& operator = (const CvSVM&);
    };

    /****************************************************************************************
    * Expectation - Maximization *
    ****************************************************************************************/
    namespace cv
    {
    class CV_EXPORTS_W EM : public Algorithm
    {
    public:
    // Type of covariation matrices
    enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};

    // Default parameters
    enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};

    // The initial step
    enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};

    CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
    const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
    EM::DEFAULT_MAX_ITERS, FLT_EPSILON));

    virtual ~EM();
    CV_WRAP virtual void clear();

    CV_WRAP virtual bool train(InputArray samples,
    OutputArray logLikelihoods=noArray(),
    OutputArray labels=noArray(),
    OutputArray probs=noArray());

    CV_WRAP virtual bool trainE(InputArray samples,
    InputArray means0,
    InputArray covs0=noArray(),
    InputArray weights0=noArray(),
    OutputArray logLikelihoods=noArray(),
    OutputArray labels=noArray(),
    OutputArray probs=noArray());

    CV_WRAP virtual bool trainM(InputArray samples,
    InputArray probs0,
    OutputArray logLikelihoods=noArray(),
    OutputArray labels=noArray(),
    OutputArray probs=noArray());

    CV_WRAP Vec2d predict(InputArray sample,
    OutputArray probs=noArray()) const;

    CV_WRAP bool isTrained() const;

    AlgorithmInfo* info() const;
    virtual void read(const FileNode& fn);

    protected:

    virtual void setTrainData(int startStep, const Mat& samples,
    const Mat* probs0,
    const Mat* means0,
    const vector<Mat>* covs0,
    const Mat* weights0);

    bool doTrain(int startStep,
    OutputArray logLikelihoods,
    OutputArray labels,
    OutputArray probs);
    virtual void eStep();
    virtual void mStep();

    void clusterTrainSamples();
    void decomposeCovs();
    void computeLogWeightDivDet();

    Vec2d computeProbabilities(const Mat& sample, Mat* probs) const;

    // all inner matrices have type CV_64FC1
    CV_PROP_RW int nclusters;
    CV_PROP_RW int covMatType;
    CV_PROP_RW int maxIters;
    CV_PROP_RW double epsilon;

    Mat trainSamples;
    Mat trainProbs;
    Mat trainLogLikelihoods;
    Mat trainLabels;

    CV_PROP Mat weights;
    CV_PROP Mat means;
    CV_PROP vector<Mat> covs;

    vector<Mat> covsEigenValues;
    vector<Mat> covsRotateMats;
    vector<Mat> invCovsEigenValues;
    Mat logWeightDivDet;
    };
    } // namespace cv

    /****************************************************************************************
    * Decision Tree *
    ****************************************************************************************/
    struct CvPair16u32s
    {
    unsigned short* u;
    int* i;
    };


    #define CV_DTREE_CAT_DIR(idx,subset)
    (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)

    struct CvDTreeSplit
    {
    int var_idx;
    int condensed_idx;
    int inversed;
    float quality;
    CvDTreeSplit* next;
    union
    {
    int subset[2];
    struct
    {
    float c;
    int split_point;
    }
    ord;
    };
    };

    struct CvDTreeNode
    {
    int class_idx;
    int Tn;
    double value;

    CvDTreeNode* parent;
    CvDTreeNode* left;
    CvDTreeNode* right;

    CvDTreeSplit* split;

    int sample_count;
    int depth;
    int* num_valid;
    int offset;
    int buf_idx;
    double maxlr;

    // global pruning data
    int complexity;
    double alpha;
    double node_risk, tree_risk, tree_error;

    // cross-validation pruning data
    int* cv_Tn;
    double* cv_node_risk;
    double* cv_node_error;

    int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; }
    void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; }
    };


    struct CV_EXPORTS_W_MAP CvDTreeParams
    {
    CV_PROP_RW int max_categories;
    CV_PROP_RW int max_depth;
    CV_PROP_RW int min_sample_count;
    CV_PROP_RW int cv_folds;
    CV_PROP_RW bool use_surrogates;
    CV_PROP_RW bool use_1se_rule;
    CV_PROP_RW bool truncate_pruned_tree;
    CV_PROP_RW float regression_accuracy;
    const float* priors;

    CvDTreeParams();
    CvDTreeParams( int max_depth, int min_sample_count,
    float regression_accuracy, bool use_surrogates,
    int max_categories, int cv_folds,
    bool use_1se_rule, bool truncate_pruned_tree,
    const float* priors );
    };


    struct CV_EXPORTS CvDTreeTrainData
    {
    CvDTreeTrainData();
    CvDTreeTrainData( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    const CvDTreeParams& params=CvDTreeParams(),
    bool _shared=false, bool _add_labels=false );
    virtual ~CvDTreeTrainData();

    virtual void set_data( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    const CvDTreeParams& params=CvDTreeParams(),
    bool _shared=false, bool _add_labels=false,
    bool _update_data=false );
    virtual void do_responses_copy();

    virtual void get_vectors( const CvMat* _subsample_idx,
    float* values, uchar* missing, float* responses, bool get_class_idx=false );

    virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );

    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    // release all the data
    virtual void clear();

    int get_num_classes() const;
    int get_var_type(int vi) const;
    int get_work_var_count() const {return work_var_count;}

    virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf );
    virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf );
    virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
    virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
    virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
    virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf,
    const float** ord_values, const int** sorted_indices, int* sample_indices_buf );
    virtual int get_child_buf_idx( CvDTreeNode* n );

    ////////////////////////////////////

    virtual bool set_params( const CvDTreeParams& params );
    virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count,
    int storage_idx, int offset );

    virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val,
    int split_point, int inversed, float quality );
    virtual CvDTreeSplit* new_split_cat( int vi, float quality );
    virtual void free_node_data( CvDTreeNode* node );
    virtual void free_train_data();
    virtual void free_node( CvDTreeNode* node );

    int sample_count, var_all, var_count, max_c_count;
    int ord_var_count, cat_var_count, work_var_count;
    bool have_labels, have_priors;
    bool is_classifier;
    int tflag;

    const CvMat* train_data;
    const CvMat* responses;
    CvMat* responses_copy; // used in Boosting

    int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead
    bool shared;
    int is_buf_16u;

    CvMat* cat_count;
    CvMat* cat_ofs;
    CvMat* cat_map;

    CvMat* counts;
    CvMat* buf;
    inline size_t get_length_subbuf() const
    {
    size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count;
    return res;
    }

    CvMat* direction;
    CvMat* split_buf;

    CvMat* var_idx;
    CvMat* var_type; // i-th element =
    // k<0 - ordered
    // k>=0 - categorical, see k-th element of cat_* arrays
    CvMat* priors;
    CvMat* priors_mult;

    CvDTreeParams params;

    CvMemStorage* tree_storage;
    CvMemStorage* temp_storage;

    CvDTreeNode* data_root;

    CvSet* node_heap;
    CvSet* split_heap;
    CvSet* cv_heap;
    CvSet* nv_heap;

    cv::RNG* rng;
    };

    class CvDTree;
    class CvForestTree;

    namespace cv
    {
    struct DTreeBestSplitFinder;
    struct ForestTreeBestSplitFinder;
    }

    class CV_EXPORTS_W CvDTree : public CvStatModel
    {
    public:
    CV_WRAP CvDTree();
    virtual ~CvDTree();

    virtual bool train( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvDTreeParams params=CvDTreeParams() );

    virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() );

    // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
    virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 );

    virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx );

    virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0,
    bool preprocessedInput=false ) const;

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
    const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
    const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
    const cv::Mat& missingDataMask=cv::Mat(),
    CvDTreeParams params=CvDTreeParams() );

    CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(),
    bool preprocessedInput=false ) const;
    CV_WRAP virtual cv::Mat getVarImportance();

    virtual const CvMat* get_var_importance();
    CV_WRAP virtual void clear();

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* fs, const char* name ) const;

    // special read & write methods for trees in the tree ensembles
    virtual void read( CvFileStorage* fs, CvFileNode* node,
    CvDTreeTrainData* data );
    virtual void write( CvFileStorage* fs ) const;

    const CvDTreeNode* get_root() const;
    int get_pruned_tree_idx() const;
    CvDTreeTrainData* get_data();

    protected:
    friend struct cv::DTreeBestSplitFinder;

    virtual bool do_train( const CvMat* _subsample_idx );

    virtual void try_split_node( CvDTreeNode* n );
    virtual void split_node_data( CvDTreeNode* n );
    virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual double calc_node_dir( CvDTreeNode* node );
    virtual void complete_node_dir( CvDTreeNode* node );
    virtual void cluster_categories( const int* vectors, int vector_count,
    int var_count, int* sums, int k, int* cluster_labels );

    virtual void calc_node_value( CvDTreeNode* node );

    virtual void prune_cv();
    virtual double update_tree_rnc( int T, int fold );
    virtual int cut_tree( int T, int fold, double min_alpha );
    virtual void free_prune_data(bool cut_tree);
    virtual void free_tree();

    virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const;
    virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const;
    virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent );
    virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node );
    virtual void write_tree_nodes( CvFileStorage* fs ) const;
    virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node );

    CvDTreeNode* root;
    CvMat* var_importance;
    CvDTreeTrainData* data;

    public:
    int pruned_tree_idx;
    };


    /****************************************************************************************
    * Random Trees Classifier *
    ****************************************************************************************/

    class CvRTrees;

    class CV_EXPORTS CvForestTree: public CvDTree
    {
    public:
    CvForestTree();
    virtual ~CvForestTree();

    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest );

    virtual int get_var_count() const {return data ? data->var_count : 0;}
    virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data );

    /* dummy methods to avoid warnings: BEGIN */
    virtual bool train( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvDTreeParams params=CvDTreeParams() );

    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void read( CvFileStorage* fs, CvFileNode* node,
    CvDTreeTrainData* data );
    /* dummy methods to avoid warnings: END */

    protected:
    friend struct cv::ForestTreeBestSplitFinder;

    virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
    CvRTrees* forest;
    };


    struct CV_EXPORTS_W_MAP CvRTParams : public CvDTreeParams
    {
    //Parameters for the forest
    CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance
    CV_PROP_RW int nactive_vars;
    CV_PROP_RW CvTermCriteria term_crit;

    CvRTParams();
    CvRTParams( int max_depth, int min_sample_count,
    float regression_accuracy, bool use_surrogates,
    int max_categories, const float* priors, bool calc_var_importance,
    int nactive_vars, int max_num_of_trees_in_the_forest,
    float forest_accuracy, int termcrit_type );
    };


    class CV_EXPORTS_W CvRTrees : public CvStatModel
    {
    public:
    CV_WRAP CvRTrees();
    virtual ~CvRTrees();
    virtual bool train( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvRTParams params=CvRTParams() );

    virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
    virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
    virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const;

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
    const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
    const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
    const cv::Mat& missingDataMask=cv::Mat(),
    CvRTParams params=CvRTParams() );
    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
    CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
    CV_WRAP virtual cv::Mat getVarImportance();

    CV_WRAP virtual void clear();

    virtual const CvMat* get_var_importance();
    virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
    const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;

    virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}

    virtual float get_train_error();

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* fs, const char* name ) const;

    CvMat* get_active_var_mask();
    CvRNG* get_rng();

    int get_tree_count() const;
    CvForestTree* get_tree(int i) const;

    protected:
    virtual std::string getName() const;

    virtual bool grow_forest( const CvTermCriteria term_crit );

    // array of the trees of the forest
    CvForestTree** trees;
    CvDTreeTrainData* data;
    int ntrees;
    int nclasses;
    double oob_error;
    CvMat* var_importance;
    int nsamples;

    cv::RNG* rng;
    CvMat* active_var_mask;
    };

    /****************************************************************************************
    * Extremely randomized trees Classifier *
    ****************************************************************************************/
    struct CV_EXPORTS CvERTreeTrainData : public CvDTreeTrainData
    {
    virtual void set_data( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    const CvDTreeParams& params=CvDTreeParams(),
    bool _shared=false, bool _add_labels=false,
    bool _update_data=false );
    virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf,
    const float** ord_values, const int** missing, int* sample_buf = 0 );
    virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
    virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
    virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
    virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing,
    float* responses, bool get_class_idx=false );
    virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
    const CvMat* missing_mask;
    };

    class CV_EXPORTS CvForestERTree : public CvForestTree
    {
    protected:
    virtual double calc_node_dir( CvDTreeNode* node );
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual void split_node_data( CvDTreeNode* n );
    };

    class CV_EXPORTS_W CvERTrees : public CvRTrees
    {
    public:
    CV_WRAP CvERTrees();
    virtual ~CvERTrees();
    virtual bool train( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvRTParams params=CvRTParams());
    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
    const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
    const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
    const cv::Mat& missingDataMask=cv::Mat(),
    CvRTParams params=CvRTParams());
    virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
    protected:
    virtual std::string getName() const;
    virtual bool grow_forest( const CvTermCriteria term_crit );
    };


    /****************************************************************************************
    * Boosted tree classifier *
    ****************************************************************************************/

    struct CV_EXPORTS_W_MAP CvBoostParams : public CvDTreeParams
    {
    CV_PROP_RW int boost_type;
    CV_PROP_RW int weak_count;
    CV_PROP_RW int split_criteria;
    CV_PROP_RW double weight_trim_rate;

    CvBoostParams();
    CvBoostParams( int boost_type, int weak_count, double weight_trim_rate,
    int max_depth, bool use_surrogates, const float* priors );
    };


    class CvBoost;

    class CV_EXPORTS CvBoostTree: public CvDTree
    {
    public:
    CvBoostTree();
    virtual ~CvBoostTree();

    virtual bool train( CvDTreeTrainData* trainData,
    const CvMat* subsample_idx, CvBoost* ensemble );

    virtual void scale( double s );
    virtual void read( CvFileStorage* fs, CvFileNode* node,
    CvBoost* ensemble, CvDTreeTrainData* _data );
    virtual void clear();

    /* dummy methods to avoid warnings: BEGIN */
    virtual bool train( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvDTreeParams params=CvDTreeParams() );
    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void read( CvFileStorage* fs, CvFileNode* node,
    CvDTreeTrainData* data );
    /* dummy methods to avoid warnings: END */

    protected:

    virtual void try_split_node( CvDTreeNode* n );
    virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
    float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual void calc_node_value( CvDTreeNode* n );
    virtual double calc_node_dir( CvDTreeNode* n );

    CvBoost* ensemble;
    };


    class CV_EXPORTS_W CvBoost : public CvStatModel
    {
    public:
    // Boosting type
    enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };

    // Splitting criteria
    enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 };

    CV_WRAP CvBoost();
    virtual ~CvBoost();

    CvBoost( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvBoostParams params=CvBoostParams() );

    virtual bool train( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvBoostParams params=CvBoostParams(),
    bool update=false );

    virtual bool train( CvMLData* data,
    CvBoostParams params=CvBoostParams(),
    bool update=false );

    virtual float predict( const CvMat* sample, const CvMat* missing=0,
    CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
    bool raw_mode=false, bool return_sum=false ) const;

    CV_WRAP CvBoost( const cv::Mat& trainData, int tflag,
    const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
    const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
    const cv::Mat& missingDataMask=cv::Mat(),
    CvBoostParams params=CvBoostParams() );

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
    const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
    const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
    const cv::Mat& missingDataMask=cv::Mat(),
    CvBoostParams params=CvBoostParams(),
    bool update=false );

    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
    const cv::Range& slice=cv::Range::all(), bool rawMode=false,
    bool returnSum=false ) const;

    virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}

    CV_WRAP virtual void prune( CvSlice slice );

    CV_WRAP virtual void clear();

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );
    virtual const CvMat* get_active_vars(bool absolute_idx=true);

    CvSeq* get_weak_predictors();

    CvMat* get_weights();
    CvMat* get_subtree_weights();
    CvMat* get_weak_response();
    const CvBoostParams& get_params() const;
    const CvDTreeTrainData* get_data() const;

    protected:

    void update_weights_impl( CvBoostTree* tree, double initial_weights[2] );

    virtual bool set_params( const CvBoostParams& params );
    virtual void update_weights( CvBoostTree* tree );
    virtual void trim_weights();
    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    CvDTreeTrainData* data;
    CvBoostParams params;
    CvSeq* weak;

    CvMat* active_vars;
    CvMat* active_vars_abs;
    bool have_active_cat_vars;

    CvMat* orig_response;
    CvMat* sum_response;
    CvMat* weak_eval;
    CvMat* subsample_mask;
    CvMat* weights;
    CvMat* subtree_weights;
    bool have_subsample;
    };


    /****************************************************************************************
    * Gradient Boosted Trees *
    ****************************************************************************************/

    // DataType: STRUCT CvGBTreesParams
    // Parameters of GBT (Gradient Boosted trees model), including single
    // tree settings and ensemble parameters.
    //
    // weak_count - count of trees in the ensemble
    // loss_function_type - loss function used for ensemble training
    // subsample_portion - portion of whole training set used for
    // every single tree training.
    // subsample_portion value is in (0.0, 1.0].
    // subsample_portion == 1.0 when whole dataset is
    // used on each step. Count of sample used on each
    // step is computed as
    // int(total_samples_count * subsample_portion).
    // shrinkage - regularization parameter.
    // Each tree prediction is multiplied on shrinkage value.


    struct CV_EXPORTS_W_MAP CvGBTreesParams : public CvDTreeParams
    {
    CV_PROP_RW int weak_count;
    CV_PROP_RW int loss_function_type;
    CV_PROP_RW float subsample_portion;
    CV_PROP_RW float shrinkage;

    CvGBTreesParams();
    CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage,
    float subsample_portion, int max_depth, bool use_surrogates );
    };

    // DataType: CLASS CvGBTrees
    // Gradient Boosting Trees (GBT) algorithm implementation.
    //
    // data - training dataset
    // params - parameters of the CvGBTrees
    // weak - array[0..(class_count-1)] of CvSeq
    // for storing tree ensembles
    // orig_response - original responses of the training set samples
    // sum_response - predicitons of the current model on the training dataset.
    // this matrix is updated on every iteration.
    // sum_response_tmp - predicitons of the model on the training set on the next
    // step. On every iteration values of sum_responses_tmp are
    // computed via sum_responses values. When the current
    // step is complete sum_response values become equal to
    // sum_responses_tmp.
    // sampleIdx - indices of samples used for training the ensemble.
    // CvGBTrees training procedure takes a set of samples
    // (train_data) and a set of responses (responses).
    // Only pairs (train_data[i], responses[i]), where i is
    // in sample_idx are used for training the ensemble.
    // subsample_train - indices of samples used for training a single decision
    // tree on the current step. This indices are countered
    // relatively to the sample_idx, so that pairs
    // (train_data[sample_idx[i]], responses[sample_idx[i]])
    // are used for training a decision tree.
    // Training set is randomly splited
    // in two parts (subsample_train and subsample_test)
    // on every iteration accordingly to the portion parameter.
    // subsample_test - relative indices of samples from the training set,
    // which are not used for training a tree on the current
    // step.
    // missing - mask of the missing values in the training set. This
    // matrix has the same size as train_data. 1 - missing
    // value, 0 - not a missing value.
    // class_labels - output class labels map.
    // rng - random number generator. Used for spliting the
    // training set.
    // class_count - count of output classes.
    // class_count == 1 in the case of regression,
    // and > 1 in the case of classification.
    // delta - Huber loss function parameter.
    // base_value - start point of the gradient descent procedure.
    // model prediction is
    // f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where
    // f_0 is the base value.

    class CV_EXPORTS_W CvGBTrees : public CvStatModel
    {
    public:

    /*
    // DataType: ENUM
    // Loss functions implemented in CvGBTrees.
    //
    // SQUARED_LOSS
    // problem: regression
    // loss = (x - x')^2
    //
    // ABSOLUTE_LOSS
    // problem: regression
    // loss = abs(x - x')
    //
    // HUBER_LOSS
    // problem: regression
    // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta
    // 1/2*(x - x')^2, if abs(x - x') <= delta,
    // where delta is the alpha-quantile of pseudo responses from
    // the training set.
    //
    // DEVIANCE_LOSS
    // problem: classification
    //
    */
    enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};


    /*
    // Default constructor. Creates a model only (without training).
    // Should be followed by one form of the train(...) function.
    //
    // API
    // CvGBTrees();

    // INPUT
    // OUTPUT
    // RESULT
    */
    CV_WRAP CvGBTrees();


    /*
    // Full form constructor. Creates a gradient boosting model and does the
    // train.
    //
    // API
    // CvGBTrees( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvGBTreesParams params=CvGBTreesParams() );

    // INPUT
    // trainData - a set of input feature vectors.
    // size of matrix is
    // <count of samples> x <variables count>
    // or <variables count> x <count of samples>
    // depending on the tflag parameter.
    // matrix values are float.
    // tflag - a flag showing how do samples stored in the
    // trainData matrix row by row (tflag=CV_ROW_SAMPLE)
    // or column by column (tflag=CV_COL_SAMPLE).
    // responses - a vector of responses corresponding to the samples
    // in trainData.
    // varIdx - indices of used variables. zero value means that all
    // variables are active.
    // sampleIdx - indices of used samples. zero value means that all
    // samples from trainData are in the training set.
    // varType - vector of <variables count> length. gives every
    // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
    // varType = 0 means all variables are numerical.
    // missingDataMask - a mask of misiing values in trainData.
    // missingDataMask = 0 means that there are no missing
    // values.
    // params - parameters of GTB algorithm.
    // OUTPUT
    // RESULT
    */
    CvGBTrees( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvGBTreesParams params=CvGBTreesParams() );


    /*
    // Destructor.
    */
    virtual ~CvGBTrees();


    /*
    // Gradient tree boosting model training
    //
    // API
    // virtual bool train( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvGBTreesParams params=CvGBTreesParams(),
    bool update=false );

    // INPUT
    // trainData - a set of input feature vectors.
    // size of matrix is
    // <count of samples> x <variables count>
    // or <variables count> x <count of samples>
    // depending on the tflag parameter.
    // matrix values are float.
    // tflag - a flag showing how do samples stored in the
    // trainData matrix row by row (tflag=CV_ROW_SAMPLE)
    // or column by column (tflag=CV_COL_SAMPLE).
    // responses - a vector of responses corresponding to the samples
    // in trainData.
    // varIdx - indices of used variables. zero value means that all
    // variables are active.
    // sampleIdx - indices of used samples. zero value means that all
    // samples from trainData are in the training set.
    // varType - vector of <variables count> length. gives every
    // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
    // varType = 0 means all variables are numerical.
    // missingDataMask - a mask of misiing values in trainData.
    // missingDataMask = 0 means that there are no missing
    // values.
    // params - parameters of GTB algorithm.
    // update - is not supported now. (!)
    // OUTPUT
    // RESULT
    // Error state.
    */
    virtual bool train( const CvMat* trainData, int tflag,
    const CvMat* responses, const CvMat* varIdx=0,
    const CvMat* sampleIdx=0, const CvMat* varType=0,
    const CvMat* missingDataMask=0,
    CvGBTreesParams params=CvGBTreesParams(),
    bool update=false );


    /*
    // Gradient tree boosting model training
    //
    // API
    // virtual bool train( CvMLData* data,
    CvGBTreesParams params=CvGBTreesParams(),
    bool update=false ) {return false;};

    // INPUT
    // data - training set.
    // params - parameters of GTB algorithm.
    // update - is not supported now. (!)
    // OUTPUT
    // RESULT
    // Error state.
    */
    virtual bool train( CvMLData* data,
    CvGBTreesParams params=CvGBTreesParams(),
    bool update=false );


    /*
    // Response value prediction
    //
    // API
    // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
    CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
    int k=-1 ) const;

    // INPUT
    // sample - input sample of the same type as in the training set.
    // missing - missing values mask. missing=0 if there are no
    // missing values in sample vector.
    // weak_responses - predictions of all of the trees.
    // not implemented (!)
    // slice - part of the ensemble used for prediction.
    // slice = CV_WHOLE_SEQ when all trees are used.
    // k - number of ensemble used.
    // k is in {-1,0,1,..,<count of output classes-1>}.
    // in the case of classification problem
    // <count of output classes-1> ensembles are built.
    // If k = -1 ordinary prediction is the result,
    // otherwise function gives the prediction of the
    // k-th ensemble only.
    // OUTPUT
    // RESULT
    // Predicted value.
    */
    virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
    CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
    int k=-1 ) const;

    /*
    // Response value prediction.
    // Parallel version (in the case of TBB existence)
    //
    // API
    // virtual float predict( const CvMat* sample, const CvMat* missing=0,
    CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
    int k=-1 ) const;

    // INPUT
    // sample - input sample of the same type as in the training set.
    // missing - missing values mask. missing=0 if there are no
    // missing values in sample vector.
    // weak_responses - predictions of all of the trees.
    // not implemented (!)
    // slice - part of the ensemble used for prediction.
    // slice = CV_WHOLE_SEQ when all trees are used.
    // k - number of ensemble used.
    // k is in {-1,0,1,..,<count of output classes-1>}.
    // in the case of classification problem
    // <count of output classes-1> ensembles are built.
    // If k = -1 ordinary prediction is the result,
    // otherwise function gives the prediction of the
    // k-th ensemble only.
    // OUTPUT
    // RESULT
    // Predicted value.
    */
    virtual float predict( const CvMat* sample, const CvMat* missing=0,
    CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
    int k=-1 ) const;

    /*
    // Deletes all the data.
    //
    // API
    // virtual void clear();

    // INPUT
    // OUTPUT
    // delete data, weak, orig_response, sum_response,
    // weak_eval, subsample_train, subsample_test,
    // sample_idx, missing, lass_labels
    // delta = 0.0
    // RESULT
    */
    CV_WRAP virtual void clear();

    /*
    // Compute error on the train/test set.
    //
    // API
    // virtual float calc_error( CvMLData* _data, int type,
    // std::vector<float> *resp = 0 );
    //
    // INPUT
    // data - dataset
    // type - defines which error is to compute: train (CV_TRAIN_ERROR) or
    // test (CV_TEST_ERROR).
    // OUTPUT
    // resp - vector of predicitons
    // RESULT
    // Error value.
    */
    virtual float calc_error( CvMLData* _data, int type,
    std::vector<float> *resp = 0 );

    /*
    //
    // Write parameters of the gtb model and data. Write learned model.
    //
    // API
    // virtual void write( CvFileStorage* fs, const char* name ) const;
    //
    // INPUT
    // fs - file storage to read parameters from.
    // name - model name.
    // OUTPUT
    // RESULT
    */
    virtual void write( CvFileStorage* fs, const char* name ) const;


    /*
    //
    // Read parameters of the gtb model and data. Read learned model.
    //
    // API
    // virtual void read( CvFileStorage* fs, CvFileNode* node );
    //
    // INPUT
    // fs - file storage to read parameters from.
    // node - file node.
    // OUTPUT
    // RESULT
    */
    virtual void read( CvFileStorage* fs, CvFileNode* node );


    // new-style C++ interface
    CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag,
    const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
    const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
    const cv::Mat& missingDataMask=cv::Mat(),
    CvGBTreesParams params=CvGBTreesParams() );

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
    const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
    const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
    const cv::Mat& missingDataMask=cv::Mat(),
    CvGBTreesParams params=CvGBTreesParams(),
    bool update=false );

    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
    const cv::Range& slice = cv::Range::all(),
    int k=-1 ) const;

    protected:

    /*
    // Compute the gradient vector components.
    //
    // API
    // virtual void find_gradient( const int k = 0);

    // INPUT
    // k - used for classification problem, determining current
    // tree ensemble.
    // OUTPUT
    // changes components of data->responses
    // which correspond to samples used for training
    // on the current step.
    // RESULT
    */
    virtual void find_gradient( const int k = 0);


    /*
    //
    // Change values in tree leaves according to the used loss function.
    //
    // API
    // virtual void change_values(CvDTree* tree, const int k = 0);
    //
    // INPUT
    // tree - decision tree to change.
    // k - used for classification problem, determining current
    // tree ensemble.
    // OUTPUT
    // changes 'value' fields of the trees' leaves.
    // changes sum_response_tmp.
    // RESULT
    */
    virtual void change_values(CvDTree* tree, const int k = 0);


    /*
    //
    // Find optimal constant prediction value according to the used loss
    // function.
    // The goal is to find a constant which gives the minimal summary loss
    // on the _Idx samples.
    //
    // API
    // virtual float find_optimal_value( const CvMat* _Idx );
    //
    // INPUT
    // _Idx - indices of the samples from the training set.
    // OUTPUT
    // RESULT
    // optimal constant value.
    */
    virtual float find_optimal_value( const CvMat* _Idx );


    /*
    //
    // Randomly split the whole training set in two parts according
    // to params.portion.
    //
    // API
    // virtual void do_subsample();
    //
    // INPUT
    // OUTPUT
    // subsample_train - indices of samples used for training
    // subsample_test - indices of samples used for test
    // RESULT
    */
    virtual void do_subsample();


    /*
    //
    // Internal recursive function giving an array of subtree tree leaves.
    //
    // API
    // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
    //
    // INPUT
    // node - current leaf.
    // OUTPUT
    // count - count of leaves in the subtree.
    // leaves - array of pointers to leaves.
    // RESULT
    */
    void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );


    /*
    //
    // Get leaves of the tree.
    //
    // API
    // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
    //
    // INPUT
    // dtree - decision tree.
    // OUTPUT
    // len - count of the leaves.
    // RESULT
    // CvDTreeNode** - array of pointers to leaves.
    */
    CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );


    /*
    //
    // Is it a regression or a classification.
    //
    // API
    // bool problem_type();
    //
    // INPUT
    // OUTPUT
    // RESULT
    // false if it is a classification problem,
    // true - if regression.
    */
    virtual bool problem_type() const;


    /*
    //
    // Write parameters of the gtb model.
    //
    // API
    // virtual void write_params( CvFileStorage* fs ) const;
    //
    // INPUT
    // fs - file storage to write parameters to.
    // OUTPUT
    // RESULT
    */
    virtual void write_params( CvFileStorage* fs ) const;


    /*
    //
    // Read parameters of the gtb model and data.
    //
    // API
    // virtual void read_params( CvFileStorage* fs );
    //
    // INPUT
    // fs - file storage to read parameters from.
    // OUTPUT
    // params - parameters of the gtb model.
    // data - contains information about the structure
    // of the data set (count of variables,
    // their types, etc.).
    // class_labels - output class labels map.
    // RESULT
    */
    virtual void read_params( CvFileStorage* fs, CvFileNode* fnode );
    int get_len(const CvMat* mat) const;


    CvDTreeTrainData* data;
    CvGBTreesParams params;

    CvSeq** weak;
    CvMat* orig_response;
    CvMat* sum_response;
    CvMat* sum_response_tmp;
    CvMat* sample_idx;
    CvMat* subsample_train;
    CvMat* subsample_test;
    CvMat* missing;
    CvMat* class_labels;

    cv::RNG* rng;

    int class_count;
    float delta;
    float base_value;

    };

    /****************************************************************************************
    * Artificial Neural Networks (ANN) *
    ****************************************************************************************/

    /////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////

    struct CV_EXPORTS_W_MAP CvANN_MLP_TrainParams
    {
    CvANN_MLP_TrainParams();
    CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method,
    double param1, double param2=0 );
    ~CvANN_MLP_TrainParams();

    enum { BACKPROP=0, RPROP=1 };

    CV_PROP_RW CvTermCriteria term_crit;
    CV_PROP_RW int train_method;

    // backpropagation parameters
    CV_PROP_RW double bp_dw_scale, bp_moment_scale;

    // rprop parameters
    CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
    };


    class CV_EXPORTS_W CvANN_MLP : public CvStatModel
    {
    public:
    CV_WRAP CvANN_MLP();
    CvANN_MLP( const CvMat* layerSizes,
    int activateFunc=CvANN_MLP::SIGMOID_SYM,
    double fparam1=0, double fparam2=0 );

    virtual ~CvANN_MLP();

    virtual void create( const CvMat* layerSizes,
    int activateFunc=CvANN_MLP::SIGMOID_SYM,
    double fparam1=0, double fparam2=0 );

    virtual int train( const CvMat* inputs, const CvMat* outputs,
    const CvMat* sampleWeights, const CvMat* sampleIdx=0,
    CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
    int flags=0 );
    virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const;

    CV_WRAP CvANN_MLP( const cv::Mat& layerSizes,
    int activateFunc=CvANN_MLP::SIGMOID_SYM,
    double fparam1=0, double fparam2=0 );

    CV_WRAP virtual void create( const cv::Mat& layerSizes,
    int activateFunc=CvANN_MLP::SIGMOID_SYM,
    double fparam1=0, double fparam2=0 );

    CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs,
    const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(),
    CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
    int flags=0 );

    CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const;

    CV_WRAP virtual void clear();

    // possible activation functions
    enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };

    // available training flags
    enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* storage, const char* name ) const;

    int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; }
    const CvMat* get_layer_sizes() { return layer_sizes; }
    double* get_weights(int layer)
    {
    return layer_sizes && weights &&
    (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0;
    }

    virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const;

    protected:

    virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs,
    const CvMat* _sample_weights, const CvMat* sampleIdx,
    CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags );

    // sequential random backpropagation
    virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );

    // RPROP algorithm
    virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );

    virtual void calc_activ_func( CvMat* xf, const double* bias ) const;
    virtual void set_activ_func( int _activ_func=SIGMOID_SYM,
    double _f_param1=0, double _f_param2=0 );
    virtual void init_weights();
    virtual void scale_input( const CvMat* _src, CvMat* _dst ) const;
    virtual void scale_output( const CvMat* _src, CvMat* _dst ) const;
    virtual void calc_input_scale( const CvVectors* vecs, int flags );
    virtual void calc_output_scale( const CvVectors* vecs, int flags );

    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    CvMat* layer_sizes;
    CvMat* wbuf;
    CvMat* sample_weights;
    double** weights;
    double f_param1, f_param2;
    double min_val, max_val, min_val1, max_val1;
    int activ_func;
    int max_count, max_buf_sz;
    CvANN_MLP_TrainParams params;
    cv::RNG* rng;
    };

    /****************************************************************************************
    * Auxilary functions declarations *
    ****************************************************************************************/

    /* Generates <sample> from multivariate normal distribution, where <mean> - is an
    average row vector, <cov> - symmetric covariation matrix */
    CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample,
    CvRNG* rng CV_DEFAULT(0) );

    /* Generates sample from gaussian mixture distribution */
    CVAPI(void) cvRandGaussMixture( CvMat* means[],
    CvMat* covs[],
    float weights[],
    int clsnum,
    CvMat* sample,
    CvMat* sampClasses CV_DEFAULT(0) );

    #define CV_TS_CONCENTRIC_SPHERES 0

    /* creates test set */
    CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
    int num_samples,
    int num_features,
    CvMat** responses,
    int num_classes, ... );

    /****************************************************************************************
    * Data *
    ****************************************************************************************/

    #define CV_COUNT 0
    #define CV_PORTION 1

    struct CV_EXPORTS CvTrainTestSplit
    {
    CvTrainTestSplit();
    CvTrainTestSplit( int train_sample_count, bool mix = true);
    CvTrainTestSplit( float train_sample_portion, bool mix = true);

    union
    {
    int count;
    float portion;
    } train_sample_part;
    int train_sample_part_mode;

    bool mix;
    };

    class CV_EXPORTS CvMLData
    {
    public:
    CvMLData();
    virtual ~CvMLData();

    // returns:
    // 0 - OK
    // -1 - file can not be opened or is not correct
    int read_csv( const char* filename );

    const CvMat* get_values() const;
    const CvMat* get_responses();
    const CvMat* get_missing() const;

    void set_response_idx( int idx ); // old response become predictors, new response_idx = idx
    // if idx < 0 there will be no response
    int get_response_idx() const;

    void set_train_test_split( const CvTrainTestSplit * spl );
    const CvMat* get_train_sample_idx() const;
    const CvMat* get_test_sample_idx() const;
    void mix_train_and_test_idx();

    const CvMat* get_var_idx();
    void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability),
    // use change_var_idx
    void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor

    const CvMat* get_var_types();
    int get_var_type( int var_idx ) const;
    // following 2 methods enable to change vars type
    // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable
    // with numerical labels; in the other cases var types are correctly determined automatically
    void set_var_types( const char* str ); // str examples:
    // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]",
    // "cat", "ord" (all vars are categorical/ordered)
    void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL }

    void set_delimiter( char ch );
    char get_delimiter() const;

    void set_miss_ch( char ch );
    char get_miss_ch() const;

    const std::map<std::string, int>& get_class_labels_map() const;

    protected:
    virtual void clear();

    void str_to_flt_elem( const char* token, float& flt_elem, int& type);
    void free_train_test_idx();

    char delimiter;
    char miss_ch;
    //char flt_separator;

    CvMat* values;
    CvMat* missing;
    CvMat* var_types;
    CvMat* var_idx_mask;

    CvMat* response_out; // header
    CvMat* var_idx_out; // mat
    CvMat* var_types_out; // mat

    int response_idx;

    int train_sample_count;
    bool mix;

    int total_class_count;
    std::map<std::string, int> class_map;

    CvMat* train_sample_idx;
    CvMat* test_sample_idx;
    int* sample_idx; // data of train_sample_idx and test_sample_idx

    cv::RNG* rng;
    };


    namespace cv
    {

    typedef CvStatModel StatModel;
    typedef CvParamGrid ParamGrid;
    typedef CvNormalBayesClassifier NormalBayesClassifier;
    typedef CvKNearest KNearest;
    typedef CvSVMParams SVMParams;
    typedef CvSVMKernel SVMKernel;
    typedef CvSVMSolver SVMSolver;
    typedef CvSVM SVM;
    typedef CvDTreeParams DTreeParams;
    typedef CvMLData TrainData;
    typedef CvDTree DecisionTree;
    typedef CvForestTree ForestTree;
    typedef CvRTParams RandomTreeParams;
    typedef CvRTrees RandomTrees;
    typedef CvERTreeTrainData ERTreeTRainData;
    typedef CvForestERTree ERTree;
    typedef CvERTrees ERTrees;
    typedef CvBoostParams BoostParams;
    typedef CvBoostTree BoostTree;
    typedef CvBoost Boost;
    typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams;
    typedef CvANN_MLP NeuralNet_MLP;
    typedef CvGBTreesParams GradientBoostingTreeParams;
    typedef CvGBTrees GradientBoostingTrees;

    template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj();

    CV_EXPORTS bool initModule_ml(void);

    }

    #endif // __cplusplus
    #endif // __OPENCV_ML_HPP__

    /* End of file. */

  • 相关阅读:
    清除浮动float
    overflow属性
    轮播图的小圆圈鼠标移上去变样式
    大banner居中
    网站logo
    VS里面设置类似于#1或者#2之类的程序快捷输入
    优先级运算简单顺口溜
    对2的次幂求模
    VS2019离线安装
    unity ContentSizeFitter设置verticalFit立即生效
  • 原文地址:https://www.cnblogs.com/2008nmj/p/11639104.html
Copyright © 2011-2022 走看看